ﻻ يوجد ملخص باللغة العربية
The observed emission lines of Be stars originate from a circumstellar Keplerian disk that are generally well explained by the Viscous Decretion Disk model. In an earlier work we performed the modeling of the full light curve of the bright Be star $omega$ CMa (Ghoreyshi et al. 2018) with the 1-D time-dependent hydrodynamics code SINGLEBE and the Monte Carlo radiative-transfer code HDUST. We used the V -band light curve that probes the inner disk through four disk formation and dissipation cycles. This new study compares predictions of the same set of model parameters with time-resolved photometry from the near UV through the mid-infrared, comprehensive series of optical spectra, and optical broad-band polarimetry, that overall represent a larger volume of the disk. Qualitatively, the models reproduce the trends in the observed data due to the growth and decay of the disk. However, quantitative differences exist, e.g., an overprediction of the flux increasing with wavelength, too slow decreases in Balmer emission-line strength that are too slow during disk dissipation, and the discrepancy between the range of polarimetric data and the model. We find that a larger value of the viscosity parameter alone, or a truncated disk by a companion star, reduces these discrepancies by increasing the dissipation rate in the outer regions of the disk.
We present interferometric observations of the Be star Zeta Tau obtained using the MIRC beam combiner at the CHARA Array. We resolved the disk during four epochs in 2007-2009. We fit the data with a geometric model to characterize the circumstellar d
We use a time-dependent hydrodynamic code and a non-LTE Monte Carlo code to model disk dissipation for the Be star 66 Ophiuchi. We compiled 63 years of observations from 1957 to 2020 to encompass the complete history of the growth and subsequent diss
The viscous decretion disk (VDD) model is able to explain most of the currently observable properties of the circumstellar disks of Be stars. However, more stringent tests, focusing on reproducing multitechnique observations of individual targets via
The Cepheus B (CepB) molecular cloud and a portion of the nearby CepOB3b OB association, one of the most active regions of star formation within 1 kpc, have been observed with the IRAC detector on board the Spitzer Space Telescope. The goals are to s
A global disk oscillation implemented in the viscous decretion disk (VDD) model has been used to reproduce most of the observed properties of the well known Be star $zeta$ Tau. 48 Librae shares several similarities with $zeta$ Tau -- they are both ea