ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence that short period AM CVn systems are diverse in outburst behaviour

87   0   0.0 ( 0 )
 نشر من قبل Christopher Duffy
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of our analysis of up to 15 years of photometric data from eight AM CVn systems with orbital periods between 22.5 and 26.8 min. Our data has been collected from the GOTO, ZTF, Pan-STARRS, ASAS-SN and Catalina all-sky surveys and amateur observations collated by the AAVSO. We find evidence that these interacting ultra-compact binaries show a similar diversity of long term optical properties as the hydrogen accreting dwarf novae. We found that AM CVn systems in the previously identified accretion disc instability region are not a homogenous group. Various members of the analysed sample exhibit behaviour reminiscent of Z Cam systems with long super outbursts and standstills, SU UMa systems with regular, shorter super outbursts, and nova-like systems which appear only in a high state. The addition of TESS full frame images of one of these systems, KL Dra, reveals the first evidence for normal outbursts appearing as a precursor to super outbursts in an AM CVn system. Our results will inform theoretical modelling of the outbursts of hydrogen deficient systems.



قيم البحث

اقرأ أيضاً

We report the discovery of a one magnitude increase in the optical brightness of the 59.63 minute orbital period AM CVn binary SDSS J113732.32+405458.3. Public $g$, $r$, and $i$ band data from the Zwicky Transient Facility (ZTF) exhibit a decline ove r a 300 day period, while a few data points from commissioning show that the peak was likely seen. Such an outburst is likely due to a change in the state of the accretion disk, making this the longest period AM CVn binary to reveal an unstable accretion disk. The object is now back to its previously observed (by SDSS and PS-1) quiescent brightness that is likely set by the accreting white dwarf. Prior observations of this object also imply that the recurrence times for such outbursts are likely more than 12 years.
We examine the relationship between superoutburst duration $t_{rm dur}$ and orbital period $P_{rm orb}$ in AM CVn ultra-compact binary systems. We show that the previously determined steep relation derived by Levitan et al (2015) was strongly influ enced by the inclusion of upper limits for systems with a relatively long orbital period in their fit. Excluding the upper limit values and including $t_{rm dur}$ values for three systems at long $P_{rm orb}$ which were not considered previously, then $d log (t_{rm dur})/ d log (P_{rm orb})$ is flat as predicted by Cannizzo & Nelemans(2015)
AM CVn systems are ultra-compact, helium-rich, accreting binaries with degenerate or semi-degenerate donors. We report the discovery of five new eclipsing AM CVn systems with orbital periods of 61.5, 55.5, 53.3, 37.4, and 35.4 minutes. These systems were discovered by searching for deep eclipses in the Zwicky Transient Facility (ZTF) lightcurves of white dwarfs selected using Gaia parallaxes. We obtained phase-resolved spectroscopy to confirm that all systems are AM CVn binaries, and we obtained high-speed photometry to confirm the eclipse and characterize the systems. The spectra of two long-period systems (61.5 and 53.3 minutes) show many emission and absorption lines, indicating the presence of N, O, Na, Mg, Si, and Ca, and also the K and Zn, elements which have never been detected in AM CVn systems before. By modelling the high-speed photometry, we measured the mass and radius of the donor star, potentially constraining the evolutionary channel that formed these AM CVn systems. We determined that the average mass of the accreting white dwarf is $approx0.8$$mathrm{M_{odot}}$, and that the white dwarfs in long-period systems are hotter than predicted by recently updated theoretical models. The donors have a high entropy and are a factor of $approx$ 2 more massive compared to zero-entropy donors at the same orbital period. The large donor radius is most consistent with He-star progenitors, although the observed spectral features seem to contradict this. The discovery of 5 new eclipsing AM~CVn systems is consistent with the known observed AM CVn space density and estimated ZTF recovery efficiency. Based on this estimate, we expect to find another 1--4 eclipsing AM CVn systems as ZTF continues to obtain data. This will further increase our understanding of the population, but will require high precision data to better characterize these 5 systems and any new discoveries.
We study the effect of short term variations of the evolution of AM CVn systems on their gravitational wave emissions and in particular LISA observations. We model the systems according to their equilibrium mass-transfer evolution as driven by gravit ational wave emission and tidal interaction, and determine their reaction to a sudden perturbation of the system. This is inspired by the suggestion to explain the orbital period evolution of the ultra-compact binary systems V407 Vul and RX-J0806+1527 by non-equilibrium mass transfer. The characteristics of the emitted gravitational wave signal are deduced from a Taylor expansion of a Newtonian quadrupolar emission model, and the changes in signal structure as visible to the LISA mission are determined. We show that short term variations can significantly change the higher order terms in the expansion, and thus lead to spurious (non) detection of frequency derivatives. This may hamper the estimation of the parameters of the system, in particular their masses and distances. However, we find that overall detection is still secured as signals still can be described by general templates. We conclude that a better modelling of the effects of short term variations is needed to prepare the community for astrophysical evaluations of real gravitational wave data of AM CVn systems.
556 - T. Kupfer 2013
Phase-resolved spectroscopy of four AM CVn systems obtained with the William Herschel Telescope and the Gran Telescopio de Canarias (GTC) is presented. SDSS,J120841.96+355025.2 was found to have an orbital period of 52.96$pm$0.40,min and shows the pr esence of a second bright spot in the accretion disc. The average spectrum contains strong Mg,{sc i} and Si,{sc i/ii} absorption lines most likely originating in the atmosphere of the accreting white dwarf. SDSS,J012940.05+384210.4 has an orbital period of 37.555$pm$0.003 min. The average spectrum shows the Stark broadened absorption lines of the DB white dwarf accretor. The orbital period is close to the previously reported superhump period of 37.9,min. Combined, this results in a period excess $epsilon$=0.0092$pm$0.0054 and a mass ratio $q=0.031pm$0.018. SDSS,J164228.06+193410.0 displays an orbital period of 54.20$pm$1.60,min with an alias at 56.35,min. The average spectrum also shows strong Mg,{sc i} absorption lines, similar to SDSS,J120841.96+355025.2. SDSS,J152509.57+360054.50 displays an period of 44.32$pm$0.18,min. The overall shape of the average spectrum is more indicative of shorter period systems in the 20-35 minute range. The accretor is still clearly visible in the pressure broadened absorption lines most likely indicating a hot donor star and/or a high mass accretor. Flux ratios for several helium lines were extracted from the Doppler tomograms for the disc and bright spot region, and compared with single-slab LTE models with variable electron densities and path lengths to estimate the disc and bright spot temperature. A good agreement between data and the model in three out of four systems was found for the disc region. All three systems show similar disc temperatures of $sim$10,500 K. In contrast, only weak agreement between observation and models was found for the bright spot region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا