ﻻ يوجد ملخص باللغة العربية
Modeling distributions of covariates, or density estimation, is a core challenge in unsupervised learning. However, the majority of work only considers the joint distribution, which has limited utility in practical situations. A more general and useful problem is arbitrary conditional density estimation, which aims to model any possible conditional distribution over a set of covariates, reflecting the more realistic setting of inference based on prior knowledge. We propose a novel method, Arbitrary Conditioning with Energy (ACE), that can simultaneously estimate the distribution $p(mathbf{x}_u mid mathbf{x}_o)$ for all possible subsets of unobserved features $mathbf{x}_u$ and observed features $mathbf{x}_o$. ACE is designed to avoid unnecessary bias and complexity -- we specify densities with a highly expressive energy function and reduce the problem to only learning one-dimensional conditionals (from which more complex distributions can be recovered during inference). This results in an approach that is both simpler and higher-performing than prior methods. We show that ACE achieves state-of-the-art for arbitrary conditional likelihood estimation and data imputation on standard benchmarks.
Many real-world situations allow for the acquisition of additional relevant information when making an assessment with limited or uncertain data. However, traditional ML approaches either require all features to be acquired beforehand or regard part
We introduce a general framework for approximating regular conditional distributions (RCDs). Our approximations of these RCDs are implemented by a new class of geometric deep learning models with inputs in $mathbb{R}^d$ and outputs in the Wasserstein
Many machine learning tasks, such as learning with invariance and policy evaluation in reinforcement learning, can be characterized as problems of learning from conditional distributions. In such problems, each sample $x$ itself is associated with a
We introduce the Neural Conditioner (NC), a self-supervised machine able to learn about all the conditional distributions of a random vector $X$. The NC is a function $NC(x cdot a, a, r)$ that leverages adversarial training to match each conditional