ﻻ يوجد ملخص باللغة العربية
Organic semiconductor/ferromagnetic bilayer thin films can exhibit novel properties due to the formation of the spinterface at the interface. Buckminsterfullerene (C60) has been shown to exhibit ferromagnetism at the interface when it is placed next to a ferromagnet (FM) such as Fe or Co. Formation of spinterface occurs due to the orbital hybridization and spin polarized charge transfer at the interface. In this work, we have demonstrated that one can tune the magnetic anisotropy of the low Gilbert damping alloy CoFeB by introducing a C60 layer. We have shown that anisotropy is enhanced by increasing the thickness of C60 which might be a result of the formation of spinterface. However, the magnetic domain structure remains same in the bilayer samples as compared to the reference CoFeB film.
Magnetic tunnel junctions with perpendicular anisotropy form the basis of the spin-transfer torque magnetic random-access memory (STT-MRAM), which is non-volatile, fast, dense, and has quasi-infinite write endurance and low power consumption. Based o
Transition metal dichalcogenides (TMD) possess novel properties which makes them potential candidates for various spintronic applications. Heterostructures of TMD with magnetic thin film have been extensively considered for spin-orbital torque, enhan
The depth profile of the intrinsic magnetic properties in an Fe/Sm-Co bilayer fabricated under nearly optimal spring-magnet conditions was determined by complementary studies of polarized neutron reflectometry and micromagnetic simulations. We found
Using first-principles calculations, we investigated the impact of chromium (Cr) and vanadium (V) impurities on the magnetic anisotropy and spin polarization in Fe/MgO magnetic tunnel junctions. It is demonstrated using layer resolved anisotropy calc
Thin highly epitaxial BiFeO$_3$ films were prepared on SrTiO$_3$ (100) substrates by reactive magnetron co-sputtering. Detailed MOKE measurements on BiFeO$_3$/Co-Fe bilayers were performed to investigate the exchange bias as a function of the films t