ﻻ يوجد ملخص باللغة العربية
Noisy labels (NL) and adversarial examples both undermine trained models, but interestingly they have hitherto been studied independently. A recent adversarial training (AT) study showed that the number of projected gradient descent (PGD) steps to successfully attack a point (i.e., find an adversarial example in its proximity) is an effective measure of the robustness of this point. Given that natural data are clean, this measure reveals an intrinsic geometric property -- how far a point is from its class boundary. Based on this breakthrough, in this paper, we figure out how AT would interact with NL. Firstly, we find if a point is too close to its noisy-class boundary (e.g., one step is enough to attack it), this point is likely to be mislabeled, which suggests to adopt the number of PGD steps as a new criterion for sample selection for correcting NL. Secondly, we confirm AT with strong smoothing effects suffers less from NL (without NL corrections) than standard training (ST), which suggests AT itself is an NL correction. Hence, AT with NL is helpful for improving even the natural accuracy, which again illustrates the superiority of AT as a general-purpose robust learning criterion.
Adversarial training (AT) based on minimax optimization is a popular learning style that enhances the models adversarial robustness. Noisy labels (NL) commonly undermine the learning and hurt the models performance. Interestingly, both research direc
Noisy labels are ubiquitous in real-world datasets, which poses a challenge for robustly training deep neural networks (DNNs) as DNNs usually have the high capacity to memorize the noisy labels. In this paper, we find that the test accuracy can be qu
The memorization effect of deep neural network (DNN) plays a pivotal role in many state-of-the-art label-noise learning methods. To exploit this property, the early stopping trick, which stops the optimization at the early stage of training, is usual
Todays available datasets in the wild, e.g., from social media and open platforms, present tremendous opportunities and challenges for deep learning, as there is a significant portion of tagged images, but often with noisy, i.e. erroneous, labels. Re
Modern neural networks have the capacity to overfit noisy labels frequently found in real-world datasets. Although great progress has been made, existing techniques are limited in providing theoretical guarantees for the performance of the neural net