ترغب بنشر مسار تعليمي؟ اضغط هنا

An Intermediate-age Alpha-rich Galactic Population in K2

59   0   0.0 ( 0 )
 نشر من قبل Jack Warfield
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the relationships between the chemistry, ages, and locations of stars in the Galaxy using asteroseismic data from the K2 mission and spectroscopic data from the Apache Point Galactic Evolution Experiment survey. Previous studies have used giant stars in the Kepler field to map the relationship between the chemical composition and the ages of stars at the solar circle. Consistent with prior work, we find that stars with high [Alpha/Fe] have distinct, older ages in comparison to stars with low [Alpha/Fe]. We provide age estimates for red giant branch (RGB) stars in the Kepler field, which support and build upon previous age estimates by taking into account the effect of alpha-enrichment on opacity. Including this effect for [Alpha/Fe]-rich stars results in up to 10% older ages for low-mass stars relative to corrected solar mixture calculations. This is a significant effect that Galactic archaeology studies should take into account. Looking beyond the Kepler field, we estimate ages for 735 red giant branch stars from the K2 mission, mapping age trends as a function of the line of sight. We find that the age distributions for low- and high-[Alpha/Fe] stars converge with increasing distance from the Galactic plane, in agreement with suggestions from earlier work. We find that K2 stars with high [Alpha/Fe] appear to be younger than their counterparts in the Kepler field, overlapping more significantly with a similarly aged low-[Alpha/Fe] population. This observation may suggest that star formation or radial migration proceeds unevenly in the Galaxy.



قيم البحث

اقرأ أيضاً

167 - T. Bensby , S. Feltzing , A. Gould 2012
We have determined detailed elemental abundances and stellar ages for a sample of now 38 microlensed dwarf and subgiant stars in the Galactic bulge. Stars with sub-solar metallicities are all old and have enhanced alpha-element abundances -- very sim ilar to what is seen for local thick disk stars. The metal-rich stars on the other hand show a wide variety of stellar ages, ranging from 3-4 Gyr to 12 Gyr, and an average around 7-8 Gyr. The existence of young and metal-rich stars are in conflict with recent photometric studies of the bulge which claim that the bulge only contains old stars.
68 - S. S. Larsen 2002
We present spectroscopy for globular clusters (GCs) in the elliptical galaxy NGC 4365, obtained with the LRIS spectrograph on the Keck I telescope. Previous studies have shown that the optical color distribution of GCs in NGC 4365 lacks the bimodal s tructure that is common in globular cluster systems, showing only a single broad peak. Measurements of Balmer line indices (Hbeta, Hgamma and Hdelta) on the GC spectra support recent suggestions by Puzia et al., based on optical and near-infrared photometry, that some of the clusters in NGC 4365 are intermediate-age (2-5 Gyrs) and metal-rich (-0.4<[Z/H]<0) rather than old (~10-15 Gyrs) and metal-poor. We also find some genuinely metal-poor, old clusters, suggesting that the ages and metallicities of the two populations conspire to produce the single broad distribution observed in optical colors.
We report the detection of a large sample of high-$alpha$-metal-rich stars on the low giant branch with $2.6<logg<3.3$ dex in the LAMOST-MRS survey. This special group corresponds to an intermediate-age population of $5-9$ Gyr based on the $[Fe/H]$-$ [C/N]$ diagram and age-$[C/N]$ calibration. A comparison group is selected to have solar $alpha$ ratio at super metallicity, which is young and has a narrow age range around 3 Gyr. Both groups have thin-disk like kinematics but the former shows slightly large velocity dispersions. The special group shows a larger extension in vertical distance toward 1.2 kpc, a second peak at smaller Galactic radius and a larger fraction of super metal rich stars with $[Fe/H]>0.2$ than the comparison group. These properties strongly indicate its connection with the outer bar/bulge region at $R=3-5$ kpc. A tentative interpretation of this special group is that its stars were formed in the X-shaped bar/bulge region, close to its corotation radius, where radial migration is the most intense, and brings them to present locations at 9 kpc and beyond. Low eccentricities and slightly outward radial excursions of its stars are consistent with this scenario. Its kinematics (cold) and chemistry ($[alpha/Fe]$ $sim 0.1$) further support the formation of the instability-driven X-shaped bar/bulge from the thin disk.
Asteroseismology is a promising tool to study Galactic structure and evolution because it can probe the ages of stars. Earlier attempts comparing seismic data from the {it Kepler} satellite with predictions from Galaxy models found that the models pr edicted more low-mass stars compared to the observed distribution of masses. It was unclear if the mismatch was due to inaccuracies in the Galactic models, or the unknown aspects of the selection function of the stars. Using new data from the K2 mission, which has a well-defined selection function, we find that an old metal-poor thick disc, as used in previous Galactic models, is incompatible with the asteroseismic information. We show that spectroscopic measurements of [Fe/H] and [$alpha$/Fe] elemental abundances from the GALAH survey indicate a mean metallicity of $log (Z/Z_{odot})=-0.16$ for the thick disc. Here $Z$ is the effective solar-scaled metallicity, which is a function of [Fe/H] and [$alpha$/Fe]. With the revised disc metallicities, for the first time, the theoretically predicted distribution of seismic masses show excellent agreement with the observed distribution of masses. This provides an indirect verification of the asteroseismic mass scaling relation is good to within five percent. Using an importance-sampling framework that takes the selection function into account, we fit a population synthesis model of the Galaxy to the observed seismic and spectroscopic data. Assuming the asteroseismic scaling relations are correct, we estimate the mean age of the thick disc to be about 10 Gyr, in agreement with the traditional idea of an old $alpha$-enhanced thick disc.
We extend our previous work on the age-chemical abundance structure of the Galactic outer disc to the inner disc (4 < r < 8 kpc) based on the SDSS/APOGEE survey. Different from the outer disc, the inner disc stars exhibit a clear bimodal distribution in the [Mg/Fe]-[Fe/H] plane. While a number of scenarios have been proposed in the literature, it remains challenging to recover this bimodal distribution with theoretical models. To this end, we present a chemical evolution model embedding a complex multi-phase inner disc formation scenario that matches the observed bimodal [Mg/Fe]-[Fe/H] distribution. In this scenario, the formation of the inner disc is dominated by two main starburst episodes 6 Gyr apart with secular, low-level star formation activity in between. In our model, the first starburst occurs at early cosmic times (t~1 Gyr) and the second one 6 Gyr later at a cosmic time of t~7 Gyr. Both these starburst episodes are associated with gas accretion events in our model, and are quenched rapidly. The first starburst leads to the formation of the high-$alpha$ sequence, and the second starburst leads to the formation of the metal-poor low-$alpha$ sequence. The metal-rich low-$alpha$ stars, instead, form during the secular evolution phase between the two bursts. Our model shows that the $alpha$-dichotomy originates from the rapid suppression of star formation after the first starburst. The two starburst episodes are likely to be responsible for the formation of the geometric thick disc (z >1 kpc), with the old inner thick disc and the young outer thick disc forming during the first and the second starbursts, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا