ﻻ يوجد ملخص باللغة العربية
We present the ARC-DA dataset, a direct-answer (open response, freeform) version of the ARC (AI2 Reasoning Challenge) multiple-choice dataset. While ARC has been influential in the community, its multiple-choice format is unrepresentative of real-world questions, and multiple choice formats can be particularly susceptible to artifacts. The ARC-DA dataset addresses these concerns by converting questions to direct-answer format using a combination of crowdsourcing and expert review. The resulting dataset contains 2985 questions with a total of 8436 valid answers (questions typically have more than one valid answer). ARC-DA is one of the first DA datasets of natural questions that often require reasoning, and where appropriate question decompositions are not evident from the questions themselves. We describe the conversion approach taken, appropriate evaluation metrics, and several strong models. Although high, the best scores (81% GENIE, 61.4% F1, 63.2% ROUGE-L) still leave considerable room for improvement. In addition, the dataset provides a natural setting for new research on explanation, as many questions require reasoning to construct answers. We hope the dataset spurs further advances in complex question-answering by the community. ARC-DA is available at https://allenai.org/data/arc-da
We present a new question set, text corpus, and baselines assembled to encourage AI research in advanced question answering. Together, these constitute the AI2 Reasoning Challenge (ARC), which requires far more powerful knowledge and reasoning than p
In e-commerce portals, generating answers for product-related questions has become a crucial task. In this paper, we focus on the task of product-aware answer generation, which learns to generate an accurate and complete answer from large-scale unlab
While day-to-day questions come with a variety of answer types, the current question-answering (QA) literature has failed to adequately address the answer diversity of questions. To this end, we present GooAQ, a large-scale dataset with a variety of
In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution
In education, open-ended quiz questions have become an important tool for assessing the knowledge of students. Yet, manually preparing such questions is a tedious task, and thus automatic question generation has been proposed as a possible alternativ