Teleportation is a quantum information processes without classical counterparts, in which the sender can disembodied transfer unknown quantum states to the receiver. In probabilistic teleportation through a partial entangled quantum channel, the transmission is exact (with fidelity 1), but may fail in a probability and simultaneously destroy the state to be teleported. We propose a scheme for nondestructive probabilistic teleportation of high-dimensional quantum states. With the aid of an ancilla in the hands of sender, the initial quantum information can be recovered when teleportation fails. The ancilla acts as a quantum apparatus to measure the senders subsystem, and erasing the information it records can resumes the initial state.