ﻻ يوجد ملخص باللغة العربية
While numerous methods have been proposed as defenses against adversarial examples in question answering (QA), these techniques are often model specific, require retraining of the model, and give only marginal improvements in performance over vanilla models. In this work, we present a simple model-agnostic approach to this problem that can be applied directly to any QA model without any retraining. Our method employs an explicit answer candidate reranking mechanism that scores candidate answers on the basis of their content overlap with the question before making the final prediction. Combined with a strong base QAmodel, our method outperforms state-of-the-art defense techniques, calling into question how well these techniques are actually doing and strong these adversarial testbeds are.
In this paper we propose a novel approach towards improving the efficiency of Question Answering (QA) systems by filtering out questions that will not be answered by them. This is based on an interesting new finding: the answer confidence scores of s
Current open-domain question answering systems often follow a Retriever-Reader architecture, where the retriever first retrieves relevant passages and the reader then reads the retrieved passages to form an answer. In this paper, we propose a simple
This paper studies joint models for selecting correct answer sentences among the top $k$ provided by answer sentence selection (AS2) modules, which are core components of retrieval-based Question Answering (QA) systems. Our work shows that a critical
In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution
In e-commerce portals, generating answers for product-related questions has become a crucial task. In this paper, we focus on the task of product-aware answer generation, which learns to generate an accurate and complete answer from large-scale unlab