ﻻ يوجد ملخص باللغة العربية
In a two-ion-species plasma with disparate ion masses, heavy ions tend to concentrate in the low-temperature region of collisionally magnetized plasma and in the high-temperature region of collisionally unmagnetized plasma, respectively. Moreover, collisional magnetization can be determined as the ratio of the light ion gyrofrequency to the collision frequency of light and heavy ion species, and the behavior of this effect in the intermediate regime of partially magnetized plasma is predominantly dependent on this Hall parameter. Multi-ion cross-field transport has been described before in the collisionally magnetized plasma regime, and generalized pinch relations, which describe densities of ion species in equilibrium in that plasma, are found in the literature. In this paper, the role of collisional magnetization and Larmor magnetization in multi-ion collisional transport is clarified and generalized pinch relations are extended to the partially magnetized regime, in which the ion Hall parameter may be small, as long as electrons remain collisionally magnetized. Equilibrium ion density profiles have the same dependence on external forces and on each other regardless of collisional magnetization of ions. The expansion of the range of validity of multi-ion collisional transport models makes them applicable to a wider range of laboratory plasma conditions. In particular, ion density profiles evolve sufficiently fast for radial impurity transport to be observable around stagnation on MagLIF, leading to expulsion of heavy ion impurities from the hotspot as long as plasma becomes sufficiently collisionally magnetized during the implosion.
A theoretical investigation has been carried out to examine the ion-acoustic shock waves (IASHWs) in a magnetized degenerate quantum plasma system containing inertialess ultra-relativistically degenerate electrons, and inertial non-relativistic posit
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an ana
We consider backscattering of laser pulses in strongly-magnetized plasma mediated by kinetic magnetohydrodynamic waves. Magnetized low-frequency scattering, which can occur when the external magnetic field is neither perpendicular nor parallel to the
Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist
Wakefield particle acceleration in hollow plasma channels is under extensive study nowadays. Here we consider an externally magnetized plasma layer (external magnetic field of arbitrary magnitude is along the structure axis) and investigate wakefield