ﻻ يوجد ملخص باللغة العربية
The Zeeman effect is of limited utility for probing the magnetism of the quiet solar chromosphere. The Hanle effect in some spectral lines is sensitive to such magnetism, but the interpretation of the scattering polarization signals requires taking into account that the chromospheric plasma is highly inhomogeneous and dynamic (i.e., that the magnetic field is not the only cause of symmetry breaking). Here we investigate the reliability of a well-known formula for mapping the azimuth of chromospheric magnetic fields directly from the scattering polarization observed in the ion{Ca}{2}~8542~AA, line, which is typically in the saturation regime of the Hanle effect. To this end, we use the Stokes profiles of the ion{Ca}{2}~8542~AA, line computed with the PORTA radiative transfer code in a three-dimensional (3D) model of the solar chromosphere, degrading them to mimic spectropolarimetric observations for a range of telescope apertures and noise levels. The simulated observations are used to obtain the magnetic field azimuth at each point of the field of view, which we compare with the actual values within the 3D model. We show that, apart from intrinsic ambiguities, the method provides solid results. Their accuracy depends more on the noise level than on the telescope diameter. Large-aperture solar telescopes, like DKIST and EST, are needed to achieve the required noise-to-signal ratios using reasonable exposure times.
We use images of high spatial and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the role magnetic field inclination angles play in the propagation characteristics of running penumbral waves in the so
We address points recently discussed in Georgoulis (2011) in reference to Leka et al. (2009b). Most importantly, we find that the results of Georgoulis (2011) support a conclusion of Leka et al. (2009b): that limited spatial resolution and the presen
In this paper, we show a proof of concept of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in t
With the high spatial and temporal resolution H$alpha$ images from the New Vacuum Solar Telescope, we focus on two groups of loops with a X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and
The emphasis of observational and theoretical flare studies in the last decade or two has been on the flare corona, and attention has shifted substantially away from the flares chromospheric aspects. However, although the pre-flare energy is stored i