ﻻ يوجد ملخص باللغة العربية
Generalized Goppa codes are defined by a code locator set $mathcal{L}$ of polynomials and a Goppa polynomial $G(x)$. When the degree of all code locator polynomials in $mathcal{L}$ is one, generalized Goppa codes are classical Goppa codes. In this work, binary generalized Goppa codes are investigated. First, a parity-check matrix for these codes with code locators of any degree is derived. A careful selection of the code locators leads to a lower bound on the minimum Hamming distance of generalized Goppa codes which improves upon previously known bounds. A quadratic-time decoding algorithm is presented which can decode errors up to half of the minimum distance. Interleaved generalized Goppa codes are introduced and a joint decoding algorithm is presented which can decode errors beyond half the minimum distance with high probability. Finally, some code parameters and how they apply to the Classic McEliece post-quantum cryptosystem are shown.
Interleaved Reed-Solomon codes admit efficient decoding algorithms which correct burst errors far beyond half the minimum distance in the random errors regime, e.g., by computing a common solution to the Key Equation for each Reed-Solomon code, as de
Goppa codes are particularly appealing for cryptographic applications. Every improvement of our knowledge of Goppa codes is of particular interest. In this paper, we present a sufficient and necessary condition for an irreducible monic polynomial $g(
Recently, Martinez-Penas and Kschischang (IEEE Trans. Inf. Theory, 2019) showed that lifted linearized Reed-Solomon codes are suitable codes for error control in multishot network coding. We show how to construct and decode lifted interleaved lineari
We propose a binary message passing decoding algorithm for product codes based on generalized minimum distance decoding (GMDD) of the component codes, where the last stage of the GMDD makes a decision based on the Hamming distance metric. The propose
An efficient decoding algorithm for horizontally u-interleaved LRPC codes is proposed and analyzed. Upper bounds on the decoding failure rate and the computational complexity of the algorithm are derived. It is shown that interleaving reduces the dec