ﻻ يوجد ملخص باللغة العربية
We introduce an algebraic system which can be used as a model for spaces with geodesic paths between any two of their points. This new algebraic structure is based on the notion of mobility algebra which has recently been introduced as a model for the unit interval of real numbers. We show that there is a strong connection between modules over a ring and affine mobility spaces over a mobility algebra. However, geodesics in general fail to be affine thus giving rise to the new algebraic structure of mobility space. We show that the so called formula for spherical linear interpolation, which gives geodesics on the n-sphere, is an example of a mobility space over the unit interval mobility algebra.
We express the Masur-Veech volume and the area Siegel-Veech constant of the moduli space of meromorphic quadratic differential with simple poles as polynomials in the intersection numbers of psi-classes supported on the boundary cycles of the Deligne
We express the Masur-Veech volume and the area Siegel-Veech constant of the moduli space $mathcal{Q}_{g,n}$ of genus $g$ meromorphic quadratic differentials with $n$ simple poles as polynomials in the intersection numbers of $psi$-classes with explic
We recursively determine the homotopy type of the space of any irreducible framed link in the 3-sphere, modulo rotations. This leads us to the homotopy type of the space of any knot in the solid torus, thus answering a question posed by Arnold. We si
We give an algorithm for determining the distance between two vertices of the complex of curves. While there already exist such algorithms, for example by Leasure, Shackleton, and Webb, our approach is new, simple, and more effective for all distance
We show that given a trivalent graph in $S^3$, either the graph complement contains an essential almost meridional planar surface or thin position for the graph is also bridge position. This can be viewed as an extension of a theorem of Thompson to g