ترغب بنشر مسار تعليمي؟ اضغط هنا

Multimodal-Aware Weakly Supervised Metric Learning with Self-weighting Triplet Loss

173   0   0.0 ( 0 )
 نشر من قبل Huiyuan Deng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, we have witnessed a surge of interests in learning a suitable distance metric from weakly supervised data. Most existing methods aim to pull all the similar samples closer while push the dissimilar ones as far as possible. However, when some classes of the dataset exhibit multimodal distribution, these goals conflict and thus can hardly be concurrently satisfied. Additionally, to ensure a valid metric, many methods require a repeated eigenvalue decomposition process, which is expensive and numerically unstable. Therefore, how to learn an appropriate distance metric from weakly supervised data remains an open but challenging problem. To address this issue, in this paper, we propose a novel weakly supervised metric learning algorithm, named MultimoDal Aware weakly supervised Metric Learning (MDaML). MDaML partitions the data space into several clusters and allocates the local cluster centers and weight for each sample. Then, combining it with the weighted triplet loss can further enhance the local separability, which encourages the local dissimilar samples to keep a large distance from the local similar samples. Meanwhile, MDaML casts the metric learning problem into an unconstrained optimization on the SPD manifold, which can be efficiently solved by Riemannian Conjugate Gradient Descent (RCGD). Extensive experiments conducted on 13 datasets validate the superiority of the proposed MDaML.



قيم البحث

اقرأ أيضاً

247 - Xiaonan Zhao , Huan Qi , Rui Luo 2019
We address the problem of distance metric learning in visual similarity search, defined as learning an image embedding model which projects images into Euclidean space where semantically and visually similar images are closer and dissimilar images ar e further from one another. We present a weakly supervised adaptive triplet loss (ATL) capable of capturing fine-grained semantic similarity that encourages the learned image embedding models to generalize well on cross-domain data. The method uses weakly labeled product description data to implicitly determine fine grained semantic classes, avoiding the need to annotate large amounts of training data. We evaluate on the Amazon fashion retrieval benchmark and DeepFashion in-shop retrieval data. The method boosts the performance of triplet loss baseline by 10.6% on cross-domain data and out-performs the state-of-art model on all evaluation metrics.
Multimodal affect recognition constitutes an important aspect for enhancing interpersonal relationships in human-computer interaction. However, relevant data is hard to come by and notably costly to annotate, which poses a challenging barrier to buil d robust multimodal affect recognition systems. Models trained on these relatively small datasets tend to overfit and the improvement gained by using complex state-of-the-art models is marginal compared to simple baselines. Meanwhile, there are many different multimodal affect recognition datasets, though each may be small. In this paper, we propose to leverage these datasets using weakly-supervised multi-task learning to improve the generalization performance on each of them. Specifically, we explore three multimodal affect recognition tasks: 1) emotion recognition; 2) sentiment analysis; and 3) sarcasm recognition. Our experimental results show that multi-tasking can benefit all these tasks, achieving an improvement up to 2.9% accuracy and 3.3% F1-score. Furthermore, our method also helps to improve the stability of model performance. In addition, our analysis suggests that weak supervision can provide a comparable contribution to strong supervision if the tasks are highly correlated.
We present a novel hierarchical triplet loss (HTL) capable of automatically collecting informative training samples (triplets) via a defined hierarchical tree that encodes global context information. This allows us to cope with the main limitation of random sampling in training a conventional triplet loss, which is a central issue for deep metric learning. Our main contributions are two-fold. (i) we construct a hierarchical class-level tree where neighboring classes are merged recursively. The hierarchical structure naturally captures the intrinsic data distribution over the whole database. (ii) we formulate the problem of triplet collection by introducing a new violate margin, which is computed dynamically based on the designed hierarchical tree. This allows it to automatically select meaningful hard samples with the guide of global context. It encourages the model to learn more discriminative features from visual similar classes, leading to faster convergence and better performance. Our method is evaluated on the tasks of image retrieval and face recognition, where it outperforms the standard triplet loss substantially by 1%-18%. It achieves new state-of-the-art performance on a number of benchmarks, with much fewer learning iterations.
We propose a novel theoretical framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks (e.g., SimCLR). First, we prove that in each SGD update of SimCLR with various loss functions, incl uding simple contrastive loss, soft Triplet loss and InfoNCE loss, the weights at each layer are updated by a emph{covariance operator} that specifically amplifies initial random selectivities that vary across data samples but survive averages over data augmentations. To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a emph{hierarchical latent tree model} (HLTM) and prove that the hidden neurons of deep ReLU networks can learn the latent variables in HLTM, despite the fact that the network receives emph{no direct supervision} from these unobserved latent variables. This leads to a provable emergence of hierarchical features through the amplification of initially random selectivities through contrastive SSL. Extensive numerical studies justify our theoretical findings. Code is released in https://github.com/facebookresearch/luckmatters/tree/master/ssl.
340 - Peidong Liu , Zibin He , Xiyu Yan 2021
Compared with tedious per-pixel mask annotating, it is much easier to annotate data by clicks, which costs only several seconds for an image. However, applying clicks to learn video semantic segmentation model has not been explored before. In this wo rk, we propose an effective weakly-supervised video semantic segmentation pipeline with click annotations, called WeClick, for saving laborious annotating effort by segmenting an instance of the semantic class with only a single click. Since detailed semantic information is not captured by clicks, directly training with click labels leads to poor segmentation predictions. To mitigate this problem, we design a novel memory flow knowledge distillation strategy to exploit temporal information (named memory flow) in abundant unlabeled video frames, by distilling the neighboring predictions to the target frame via estimated motion. Moreover, we adopt vanilla knowledge distillation for model compression. In this case, WeClick learns compact video semantic segmentation models with the low-cost click annotations during the training phase yet achieves real-time and accurate models during the inference period. Experimental results on Cityscapes and Camvid show that WeClick outperforms the state-of-the-art methods, increases performance by 10.24% mIoU than baseline, and achieves real-time execution.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا