ترغب بنشر مسار تعليمي؟ اضغط هنا

Electricity-gas integrated energy system optimal operation in typical scenario of coal district considering hydrogen heavy trucks

115   0   0.0 ( 0 )
 نشر من قبل Junjie Yin
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The coal industry contributes significantly to the social economy, but the emission of greenhouse gases puts huge pressure on the environment in the process of mining, transportation, and power generation. In the integrated energy system (IES), the current research about the power-to-gas (P2G) technology mainly focuses on the injection of hydrogen generated from renewable energy electrolyzed water into natural gas pipelines, which may cause hydrogen embrittlement of the pipeline and cannot be repaired. In this paper, sufficient hydrogen energy can be produced through P2G technology and coal-to-hydrogen (C2H) of coal gasification, considering the scenario of coal district is rich in coal and renewable energy. In order to transport the mined coal to the destination, hydrogen heavy trucks have a broad space for development, which can absorb hydrogen energy in time and avoid potentially dangerous hydrogen injection into pipelines and relatively expensive hydrogen storage. An optimized scheduling model of electric-gas IES is proposed based on second-order cone programming (SOCP). In the model proposed above, the closed industrial loop (including coal mining, hydrogen production, truck transportation of coal, and integrated energy systems) has been innovatively studied, to consume renewable energy and coordinate multi-energy. Finally, an electric-gas IES study case constructed by IEEE 30-node power system and Belgium 24-node natural gas network was used to analyze and verify the economy, low carbon, and effectiveness of the proposed mechanism.



قيم البحث

اقرأ أيضاً

79 - Dafeng Zhu , Bo Yang , Qi Liu 2020
The emerging paradigm of interconnected microgrids advocates energy trading or sharing among multiple microgrids. It helps make full use of the temporal availability of energy and diversity in operational costs when meeting various energy loads. Howe ver, energy trading might not completely absorb excess renewable energy. A multi-energy management framework including fuel cell vehicles, energy storage, combined heat and power system, and renewable energy is proposed, and the characteristics and scheduling arrangements of fuel cell vehicles are considered to further improve the local absorption of the renewable energy and enhance the economic benefits of microgrids. While intensive research has been conducted on energy scheduling and trading problem, a fundamental question still remains unanswered on microgrid economics. Namely, due to multi-energy coupling, stochastic renewable energy generation and demands, when and how a microgrid should schedule and trade energy with others, which maximizes its long-term benefit. This paper designs a joint energy scheduling and trading algorithm based on Lyapunov optimization and a double-auction mechanism. Its purpose is to determine the valuations of energy in the auction, optimally schedule energy distribution, and strategically purchase and sell energy with the current electricity prices. Simulations based on real data show that each individual microgrid, under the management of the proposed algorithm, can achieve a time-averaged profit that is arbitrarily close to an optimum value, while avoiding compromising its own comfort.
62 - Ang Xuan , Yang Qiu , Yang Liu 2021
Regional integrated energy system coupling with multienergy devices, energy storage devices, and renewable energy devices has been regarded as one of the most promising solutions for future energy systems. Planning for existing natural gas and electr icity network expansion, regional integrated energy system locations, or system equipment types and capacities are urgent problems in infrastructure development. This article employs a joint planning model to address these; however, the joint planning model ignores the potential ownerships by three agents, for which investment decisions are generally made by different investors. In this work, the joint planning model is decomposed into three distributed planning subproblems related to the corresponding stakeholders, and the alternating direction method of multipliers is adopted to solve the tripartite distributed planning problem. The effectiveness of the planning model is verified on an updated version of the Institute of Electrical and Electronics Engineers (IEEE) 24-bus electric system, the Belgian 20-node natural gas system, and three assumed integrated energy systems. Simulation results illustrate that a distributed planning model is more sensitive to individual load differences, which is precisely the defect of the joint planning model. Moreover, the algorithm performance considering rates of convergence and the impacts of penalty parameters is further analyzed
The integration of renewables into electrical grids calls for optimization-based control schemes requiring reliable grid models. Classically, parameter estimation and optimization-based control is often decoupled, which leads to high system operation cost in the estimation procedure. The present work proposes a method for simultaneously minimizing grid operation cost and optimally estimating line parameters based on methods for the optimal design of experiments. This method leads to a substantial reduction in cost for optimal estimation and in higher accuracy in the parameters compared with standard Optimal Power Flow and maximum-likelihood estimation. We illustrate the performance of the proposed method on a benchmark system.
93 - Yang Li , Bin Wang , Zhen Yang 2021
The community integrated energy system (CIES) is an essential energy internet carrier that has recently been the focus of much attention. A scheduling model based on chance-constrained programming is proposed for integrated demand response (IDR)-enab led CIES in uncertain environments to minimize the system operating costs, where an IDR program is used to explore the potential interaction ability of electricity-gas-heat flexible loads and electric vehicles. Moreover, power to gas (P2G) and micro-gas turbine (MT), as links of multi-energy carriers, are adopted to strengthen the coupling of different energy subsystems. Sequence operation theory (SOT) and linearization methods are employed to transform the original model into a solvable mixed-integer linear programming model. Simulation results on a practical CIES in North China demonstrate an improvement in the CIES operational economy via the coordination of IDR and renewable uncertainties, with P2G and MT enhancing the system operational flexibility and user comprehensive satisfaction. The CIES operation is able to achieve a trade-off between economy and system reliability by setting a suitable confidence level for the spinning reserve constraints. Besides, the proposed solution method outperforms the Hybrid Intelligent Algorithm in terms of both optimization results and calculation efficiency.
Massive adoptions of combined heat and power (CHP) units necessitate the coordinated operation of power system and district heating system (DHS). Exploiting the reconfigurable property of district heating networks (DHNs) provides a cost-effective sol ution to enhance the flexibility of the power system by redistributing heat loads in DHS. In this paper, a unit commitment considering combined electricity and reconfigurable heating network (UC-CERHN) is proposed to coordinate the day-ahead scheduling of power system and DHS. The DHS is formulated as a nonlinear and mixed-integer model with considering the reconfigurable DHN. Also, an auxiliary energy flow variable is introduced in the formed DHS model to make the commitment problem tractable, where the computational burdens are significantly reduced. Extensive case studies are presented to validate the effectiveness of the approximated model and illustrate the potential benefits of the proposed method with respect to congestion management and wind power accommodation. (Corresponding author:Hongbin Sun)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا