ﻻ يوجد ملخص باللغة العربية
We investigate the use of spatial interpolation methods for reconstructing the horizontal near-surface wind field given a sparse set of measurements. In particular, random Fourier features is compared to a set of benchmark methods including Kriging and Inverse distance weighting. Random Fourier features is a linear model $beta(pmb x) = sum_{k=1}^K beta_k e^{iomega_k pmb x}$ approximating the velocity field, with frequencies $omega_k$ randomly sampled and amplitudes $beta_k$ trained to minimize a loss function. We include a physically motivated divergence penalty term $| abla cdot beta(pmb x)|^2$, as well as a penalty on the Sobolev norm. We derive a bound on the generalization error and derive a sampling density that minimizes the bound. Following (arXiv:2007.10683 [math.NA]), we devise an adaptive Metropolis-Hastings algorithm for sampling the frequencies of the optimal distribution. In our experiments, our random Fourier features model outperforms the benchmark models.
Motivated by the desire to numerically calculate rigorous upper and lower bounds on deviation probabilities over large classes of probability distributions, we present an adaptive algorithm for the reconstruction of increasing real-valued functions.
The computational cost of training with softmax cross entropy loss grows linearly with the number of classes. For the settings where a large number of classes are involved, a common method to speed up training is to sample a subset of classes and uti
The method of random projection (RP) is the standard technique in machine learning and many other areas, for dimensionality reduction, approximate near neighbor search, compressed sensing, etc. Basically, RP provides a simple and effective scheme for
In this paper a deterministic sparse Fourier transform algorithm is presented which breaks the quadratic-in-sparsity runtime bottleneck for a large class of periodic functions exhibiting structured frequency support. These functions include, e.g., th
This paper proposes a novel, rigorous and simple Fourier-transformation approach to study resonances in a perfectly conducting slab with finite number of subwavelength slits of width $hll 1$. Since regions outside the slits are variable separated, by