ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-$N_c$ analysis of two-nucleon neutrinoless double beta decay and charge-independence-breaking contact terms

123   0   0.0 ( 0 )
 نشر من قبل Thomas Richardson
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The interpretation of experiments that search for neutrinoless double beta decay relies on input from nuclear theory. Cirigliano et al. recently showed that, for the light Majorana exchange formalism, effective field theory calculations require a $nnto pp e^- e^-$ contact term at leading order. They estimated the size of this contribution by relating it to measured charge-independence-breaking (CIB) nucleon-nucleon interactions and making an assumption about the relative sizes of CIB operators. We show that the assumptions underlying this approximation are justified in the limit of the number of colors $N_c$ being large. We also obtain a large-$N_c$ hierarchy among CIB nucleon-nucleon interactions that is in agreement with phenomenological results.



قيم البحث

اقرأ أيضاً

We present a method to determine the leading-order (LO) contact term contributing to the $nn to pp e^-e^-$ amplitude through the exchange of light Majorana neutrinos. Our approach is based on the representation of the amplitude as the momentum integr al of a known kernel (proportional to the neutrino propagator) times the generalized forward Compton scattering amplitude $n(p_1) n(p_2) W^+ (k) to p(p_1^prime) p(p_2^prime) W^- (k)$, in analogy to the Cottingham formula for the electromagnetic contribution to hadron masses. We construct model-independent representations of the integrand in the low- and high-momentum regions, through chiral EFT and the operator product expansion, respectively. We then construct a model for the full amplitude by interpolating between these two regions, using appropriate nucleon factors for the weak currents and information on nucleon-nucleon ($N! N$) scattering in the $^1S_0$ channel away from threshold. By matching the amplitude obtained in this way to the LO chiral EFT amplitude we obtain the relevant LO contact term and discuss various sources of uncertainty. We validate the approach by computing the analog $I = 2$ $N! N$ contact term and by reproducing, within uncertainties, the charge-independence-breaking contribution to the $^1S_0$ $N! N$ scattering lengths. While our analysis is performed in the $overline{rm MS}$ scheme, we express our final result in terms of the scheme-independent renormalized amplitude ${cal A}_ u(|{bf p}|,|{bf p}^prime|)$ at a set of kinematic points near threshold. We illustrate for two cutoff schemes how, using our synthetic data for ${cal A}_ u$, one can determine the contact-term contribution in any regularization scheme, in particular the ones employed in nuclear-structure calculations for isotopes of experimental interest.
The process at the heart of neutrinoless double-beta decay, $nn rightarrow p p, e^- e^-$ induced by a light Majorana neutrino, is investigated in pionless and chiral effective field theory. We show in various regularization schemes the need to introd uce a short-range lepton-number-violating operator at leading order, confirming earlier findings. We demonstrate that such a short-range operator is only needed in spin-singlet $S$-wave transitions, while leading-order transitions involving higher partial waves depend solely on long-range currents. Calculations are extended to include next-to-leading corrections in perturbation theory, where to this order no additional undetermined parameters appear. We establish a connection based on chiral symmetry between neutrinoless double-beta decay and nuclear charge-independence breaking induced by electromagnetism. Data on the latter confirm the need for a leading-order short-range operator, but do not allow for a full determination of the corresponding lepton-number-violating coupling. Using a crude estimate of this coupling, we perform ab initio calculations of the matrix elements for neutrinoless double-beta decay for $^6$He and $^{12}$Be. We speculate on the phenomenological impact of the leading short-range operator on the basis of these results.
We show that chiral effective field theory (EFT) two-body currents provide important contributions to the quenching of low-momentum-transfer Gamow-Teller transitions, and use chiral EFT to predict the momentum-transfer dependence that is probed in ne utrinoless double-beta decay. We then calculate for the first time the neutrinoless double-beta decay operator based on chiral EFT currents and study the nuclear matrix elements at successive orders. The contributions from chiral two-body currents are significant and should be included in all calculations.
We analyze magnetic and axial two-nucleon contact terms in a combined large-$N_c$ and pionless effective field theory expansion. These terms play important roles in correctly describing, e.g., the low-energy cross section of radiative neutron capture and the deuteron magnetic moment. We show that the large-$N_c$ expansion hints towards a hierarchy between the two leading-order magnetic terms that matches that found in phenomenological fits. We also comment on the issue of naturalness in different Lagrangian bases.
We present the first ab initio calculations of neutrinoless double beta decay matrix elements in $A=6$-$12$ nuclei using Variational Monte Carlo wave functions obtained from the Argonne $v_{18}$ two-nucleon potential and Illinois-7 three-nucleon inte raction. We study both light Majorana neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton number violation. Our results provide benchmarks to be used in testing many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we have also studied the impact of two-body short range correlations and the use of different forms for the transition operators, such as those corresponding to different orders in chiral effective theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا