Improved robustness of quantum supremacy for random circuit sampling


الملخص بالإنكليزية

Motivated by the recent experimental demonstrations of quantum supremacy, proving the hardness of the output of random quantum circuits is an imperative near term goal. We prove under the complexity theoretical assumption of the non-collapse of the polynomial hierarchy that approximating the output probabilities of random quantum circuits to within $exp(-Omega(mlog m))$ additive error is hard for any classical computer, where $m$ is the number of gates in the quantum computation. More precisely, we show that the above problem is $#mathsf{P}$-hard under $mathsf{BPP}^{mathsf{NP}}$ reduction. In the recent experiments, the quantum circuit has $n$-qubits and the architecture is a two-dimensional grid of size $sqrt{n}timessqrt{n}$. Indeed for constant depth circuits approximating the output probabilities to within $2^{-Omega(nlog{n})}$ is hard. For circuits of depth $log{n}$ or $sqrt{n}$ for which the anti-concentration property holds, approximating the output probabilities to within $2^{-Omega(nlog^2{n})}$ and $2^{-Omega(n^{3/2}log n)}$ is hard respectively. We made an effort to find the best proofs and proved these results from first principles, which do not use the standard techniques such as the Berlekamp--Welch algorithm, the usual Paturis lemma, and Rakhmanovs result.

تحميل البحث