Pluriclosed and Strominger Kahler-like metrics compatible with abelian complex structures


الملخص بالإنكليزية

We show that the existence of a left-invariant pluriclosed Hermitian metric on a unimodular Lie group with a left-invariant abelian complex structure forces the group to be $2$-step nilpotent. Moreover, we prove that the pluriclosed flow starting from a left-invariant Hermitian metric on a $2$-step nilpotent Lie group preserves the Strominger Kahler-like condition.

تحميل البحث