ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic traffic assignment in a corridor network: Optimum versus Equilibrium

167   0   0.0 ( 0 )
 نشر من قبل Koki Satsukawa
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This study investigates dynamic system-optimal (DSO) and dynamic user equilibrium (DUE) traffic assignment of departure/arrival-time choices in a corridor network. The morning commute problems with a many-to-one pattern of origin-destination demand and the evening commute problems with a one-to-many pattern are considered. Specifically, a novel approach to derive closed-form solutions for both DSO and DUE problems is developed. We first derive a closed-form solution to the DSO problem based on the regularities of the cost and flow variables at an optimal state. By utilizing this solution, we prove that the queuing delay at a bottleneck in a DUE solution is equal to an optimal toll that eliminates the queue in a DSO solution under certain conditions of a schedule delay function. This enables us to derive a closed-form DUE solution by using the DSO solution. We also show the theoretical relationship between the DSO and DUE assignment. Numerical examples are provided to illustrate and verify the analytical results.



قيم البحث

اقرأ أيضاً

In this study, we analyse the convergence and stability of dynamic system optimal (DSO) traffic assignment with fixed departure times. We first formulate the DSO traffic assignment problem as a strategic game wherein atomic users select routes that m inimise their marginal social costs, called a DSO game. By utilising the fact that the DSO game is a potential game, we prove that a globally optimal state is a stochastically stable state under the logit response dynamics, and the better/best response dynamics converges to a locally optimal state. Furthermore, as an application of DSO assignment, we examine characteristics of the evolutionary implementation scheme of marginal cost pricing. Through theoretical comparison with a fixed pricing scheme, we found the following properties of the evolutionary implementation scheme: (i) the total travel time decreases smoother to an efficient traffic state as congestion externalities are perfectly internalised; (ii) a traffic state would reach a more efficient state as the globally optimal state is stabilised. Numerical experiments also suggest that these properties make the evolutionary scheme robust in the sense that they prevent a traffic state from going to worse traffic states with high total travel times.
We design a coordination mechanism for truck drivers that uses pricing-and-routing schemes that can help alleviate traffic congestion in a general transportation network. We consider the user heterogeneity in Value-Of-Time (VOT) by adopting a multi-c lass model with stochastic Origin-Destination (OD) demands for the truck drivers. The main characteristic of the mechanism is that the coordinator asks the truck drivers to declare their desired OD pair and pick their individual VOT from a set of $N$ available options, and guarantees that the resulting pricing-and-routing scheme is Pareto-improving, i.e. every truck driver will be better-off compared to the User Equilibrium (UE) and that every truck driver will have an incentive to truthfully declare his/her VOT, while leading to a revenue-neutral (budget balanced) on average mechanism. This approach enables us to design personalized (VOT-based) pricing-and-routing schemes. We show that the Optimum Pricing Scheme (OPS) can be calculated by solving a nonconvex optimization problem. To improve computational efficiency, we propose an Approximately Optimum Pricing Scheme (AOPS) and prove that it satisfies the aforementioned properties. Both pricing-and-routing schemes are compared to the Congestion Pricing with Uniform Revenue Refunding (CPURR) scheme through extensive simulation experiments where it is shown that OPS and AOPS achieve a much lower expected total travel time and expected total monetary cost for the users compared to the CPURR scheme, without negatively affecting the rest of the network. These results demonstrate the efficiency of personalized (VOT-based) pricing-and-routing schemes.
This paper presents a systematic approach for analyzing the departure-time choice equilibrium (DTCE) problem of a single bottleneck with heterogeneous commuters. The approach is based on the fact that the DTCE is equivalently represented as a linear programming problem with a special structure, which can be analytically solved by exploiting the theory of optimal transport combined with a decomposition technique. By applying the proposed approach to several types of models with heterogeneous commuters, it is shown that (i) the essential condition for emerging equilibrium sorting patterns, which have been known in the literature, is that the schedule delay functions have the Monge property, (ii) the equilibrium problems with the Monge property can be solved analytically, and (iii) the proposed approach can be applied to a more general problem with more than two types of heterogeneities.
In this paper we propose a new operator splitting algorithm for distributed Nash equilibrium seeking under stochastic uncertainty, featuring relaxation and inertial effects. Our work is inspired by recent deterministic operator splitting methods, des igned for solving structured monotone inclusion problems. The algorithm is derived from a forward-backward-forward scheme for solving structured monotone inclusion problems featuring a Lipschitz continuous and monotone game operator. To the best of our knowledge, this is the first distributed (generalized) Nash equilibrium seeking algorithm featuring acceleration techniques in stochastic Nash games without assuming cocoercivity. Numerical examples illustrate the effect of inertia and relaxation on the performance of our proposed algorithm.
In infinite-dimensional Hilbert spaces we device a class of strongly convergent primal-dual schemes for solving variational inequalities defined by a Lipschitz continuous and pseudomonote map. Our novel numerical scheme is based on Tsengs forward-bac kward-forward scheme, which is known to display weak convergence, unless very strong global monotonicity assumptions are made on the involved operators. We provide a simple augmentation of this algorithm which is computationally cheap and still guarantees strong convergence to a minimal norm solution of the underlying problem. We provide an adaptive extension of the algorithm, freeing us from requiring knowledge of the global Lipschitz constant. We test the performance of the algorithm in the computationally challenging task to find dynamic user equilibria in traffic networks and verify that our scheme is at least competitive to state-of-the-art solvers, and in some case even improve upon them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا