ﻻ يوجد ملخص باللغة العربية
The local escape velocity provides valuable inputs to the mass profile of the Galaxy, and requires understanding the tail of the stellar speed distribution. Following Leonard $&$ Tremaine (1990), various works have since modeled the tail of the stellar speed distribution as $propto (v_{rm{esc}} -v)^k$, where $v_{rm{esc}}$ is the escape velocity, and $k$ is the slope of the distribution. In such studies, however, these two parameters were found to be largely degenerate and often a narrow prior is imposed on $k$ in order to constrain $v_{rm{esc}}$. Furthermore, the validity of the power law form is likely to break down in the presence of multiple kinematic substructures. In this paper, we introduce a strategy that for the first time takes into account the presence of kinematic substructure. We model the tail of the velocity distribution as a sum of multiple power laws without imposing strong priors. Using mock data, we show the robustness of this method in the presence of kinematic structure that is similar to the recently-discovered Gaia Sausage. In a companion paper, we present the new measurement of the escape velocity and subsequently the mass of the Milky Way using Gaia DR2 data.
Measuring the escape velocity of the Milky Way is critical in obtaining the mass of the Milky Way, understanding the dark matter velocity distribution, and building the dark matter density profile. In Necib $&$ Lin (2021), we introduced a strategy to
Tidal debris from infalling satellites can leave observable structure in the phase-space distribution of the Galactic halo. Such substructure can be manifest in the spatial and/or velocity distributions of the stars in the halo. This paper focuses on
We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Ways halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierar
We model the fastest moving (v_tot > 300 km/s) local (D < 3 kpc) halo stars using cosmological simulations and 6-dimensional Gaia data. Our approach is to use our knowledge of the assembly history and phase-space distribution of halo stars to constra
We confirm, quantify, and provide a table of the coherent velocity substructure of the Milky Way disk within 2 kpc of the Sun towards the Galactic anticenter, with 0.2 kpc resolution. We use the radial velocities of ~340,000 F-type stars obtained wit