ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Compressed Sensing Based Image Coding by Using Gray Transformation

133   0   0.0 ( 0 )
 نشر من قبل Lan Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, compressed sensing (CS) based image coding has become a hot topic in image processing field. However, since the bit depth required for encoding each CS sample is too large, the compression performance of this paradigm is unattractive. To address this issue, a novel CS-based image coding system by using gray transformation is proposed. In the proposed system, we use a gray transformation to preprocess the original image firstly and then use CS to sample the transformed image. Since gray transformation makes the probability distribution of CS samples centralized, the bit depth required for encoding each CS sample is reduced significantly. Consequently, the proposed system can considerably improve the compression performance of CS-based image coding. Simulation results show that the proposed system outperforms the traditional one without using gray transformation in terms of compression performance.



قيم البحث

اقرأ أيضاً

In a frequency division duplex (FDD) massive multiple input multiple output (MIMO) system, the channel state information (CSI) feedback causes a significant bandwidth resource occupation. In order to save the uplink bandwidth resources, a 1-bit compr essed sensing (CS)-based CSI feedback method assisted by superimposed coding (SC) is proposed. Using 1-bit CS and SC techniques, the compressed support-set information and downlink CSI (DL-CSI) are superimposed on the uplink user data sequence (UL-US) and fed back to base station (BS). Compared with the SC-based feedback, the analysis and simulation results show that the UL-USs bit error ratio (BER) and the DL-CSIs accuracy can be improved in the proposed method, without using the exclusive uplink bandwidth resources to feed DL-CSI back to BS.
161 - Thomas Maugey , Antonio Ortega , 2013
In this paper, we propose a new representation for multiview image sets. Our approach relies on graphs to describe geometry information in a compact and controllable way. The links of the graph connect pixels in different images and describe the prox imity between pixels in the 3D space. These connections are dependent on the geometry of the scene and provide the right amount of information that is necessary for coding and reconstructing multiple views. This multiview image representation is very compact and adapts the transmitted geometry information as a function of the complexity of the prediction performed at the decoder side. To achieve this, our GBR adapts the accuracy of the geometry representation, in contrast with depth coding, which directly compresses with losses the original geometry signal. We present the principles of this graph-based representation (GBR) and we build a complete prototype coding scheme for multiview images. Experimental results demonstrate the potential of this new representation as compared to a depth-based approach. GBR can achieve a gain of 2 dB in reconstructed quality over depth-based schemes operating at similar rates.
Modern image and video compression codes employ elaborate structures existing in such signals to encode them into few number of bits. Compressed sensing recovery algorithms on the other hand use such signals structures to recover them from few linear observations. Despite the steady progress in the field of compressed sensing, structures that are often used for signal recovery are still much simpler than those employed by state-of-the-art compression codes. The main goal of this paper is to bridge this gap through answering the following question: Can one employ a given compression code to build an efficient (polynomial time) compressed sensing recovery algorithm? In response to this question, the compression-based gradient descent (C-GD) algorithm is proposed. C-GD, which is a low-complexity iterative algorithm, is able to employ a generic compression code for compressed sensing and therefore elevates the scope of structures used in compressed sensing to those used by compression codes. The convergence performance of C-GD and its required number of measurements in terms of the rate-distortion performance of the compression code are theoretically analyzed. It is also shown that C-GD is robust to additive white Gaussian noise. Finally, the presented simulation results show that combining C-GD with commercial image compression codes such as JPEG2000 yields state-of-the-art performance in imaging applications.
Photoacoustic imaging (PAI) is a novel medical imaging modality that uses the advantages of the spatial resolution of ultrasound imaging and the high contrast of pure optical imaging. Analytical algorithms are usually employed to reconstruct the phot oacoustic (PA) images as a result of their simple implementation. However, they provide a low accurate image. Model-based (MB) algorithms are used to improve the image quality and accuracy while a large number of transducers and data acquisition are needed. In this paper, we have combined the theory of compressed sensing (CS) with MB algorithms to reduce the number of transducer. Smoothed version of L0-norm (SL0) was proposed as the reconstruction method, and it was compared with simple iterative reconstruction (IR) and basis pursuit. The results show that S$ell_0$ provides a higher image quality in comparison with other methods while a low number of transducers were. Quantitative comparison demonstrates that, at the same condition, the SL0 leads to a peak-signal-to-noise ratio for about two times of the basis pursuit.
Expander graphs have been recently proposed to construct efficient compressed sensing algorithms. In particular, it has been shown that any $n$-dimensional vector that is $k$-sparse (with $kll n$) can be fully recovered using $O(klogfrac{n}{k})$ meas urements and only $O(klog n)$ simple recovery iterations. In this paper we improve upon this result by considering expander graphs with expansion coefficient beyond 3/4 and show that, with the same number of measurements, only $O(k)$ recovery iterations are required, which is a significant improvement when $n$ is large. In fact, full recovery can be accomplished by at most $2k$ very simple iterations. The number of iterations can be made arbitrarily close to $k$, and the recovery algorithm can be implemented very efficiently using a simple binary search tree. We also show that by tolerating a small penalty on the number of measurements, and not on the number of recovery iterations, one can use the efficient construction of a family of expander graphs to come up with explicit measurement matrices for this method. We compare our result with other recently developed expander-graph-based methods and argue that it compares favorably both in terms of the number of required measurements and in terms of the recovery time complexity. Finally we will show how our analysis extends to give a robust algorithm that finds the position and sign of the $k$ significant elements of an almost $k$-sparse signal and then, using very simple optimization techniques, finds in sublinear time a $k$-sparse signal which approximates the original signal with very high precision.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا