ترغب بنشر مسار تعليمي؟ اضغط هنا

The wide-field infrared transient explorer (WINTER)

244   0   0.0 ( 0 )
 نشر من قبل Nathan Lourie
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Wide-Field Infrared Transient Explorer (WINTER) is a new infrared time-domain survey instrument which will be deployed on a dedicated 1 meter robotic telescope at Palomar Observatory. WINTER will perform a seeing-limited time domain survey of the infrared (IR) sky, with a particular emphasis on identifying r-process material in binary neutron star (BNS) merger remnants detected by LIGO. We describe the scientific goals and survey design of the WINTER instrument. With a dedicated trigger and the ability to map the full LIGO O4 positional error contour in the IR to a distance of 190 Mpc within four hours, WINTER will be a powerful kilonova discovery engine and tool for multi-messenger astrophysics investigations. In addition to follow-up observations of merging binaries, WINTER will facilitate a wide range of time-domain astronomical observations, all the while building up a deep coadded image of the static infrared sky suitable for survey science. WINTERs custom camera features six commercial large-format Indium Gallium Arsenide (InGaAs) sensors and a tiled optical system which covers a $>$1-square-degree field of view with 90% fill factor. The instrument observes in Y, J and a short-H (Hs) band tuned to the long-wave cutoff of the InGaAs sensors, covering a wavelength range from 0.9 - 1.7 microns. We present the design of the WINTER instrument and current progress towards final integration at Palomar Observatory and commissioning planned for mid-2021.



قيم البحث

اقرأ أيضاً

The Wide-field Infrared Transient Explorer (WINTER) is a 1x1 degree infrared survey telescope under development at MIT and Caltech, and slated for commissioning at Palomar Observatory in 2021. WINTER is a seeing-limited infrared time-domain survey an d has two main science goals: (1) the discovery of IR kilonovae and r-process materials from binary neutron star mergers and (2) the study of general IR transients, including supernovae, tidal disruption events, and transiting exoplanets around low mass stars. We plan to meet these science goals with technologies that are relatively new to astrophysical research: hybridized InGaAs sensors as an alternative to traditional, but expensive, HgCdTe arrays and an IR-optimized 1-meter COTS telescope. To mitigate risk, optimize development efforts, and ensure that WINTER meets its science objectives, we use model-based systems engineering (MBSE) techniques commonly featured in aerospace engineering projects. Even as ground-based instrumentation projects grow in complexity, they do not often have the budget for a full-time systems engineer. We present one example of systems engineering for the ground-based WINTER project, featuring software tools that allow students or staff to learn the fundamentals of MBSE and capture the results in a formalized software interface. We focus on the top-level science requirements with a detailed example of how the goal of detecting kilonovae flows down to WINTERs optical design. In particular, we discuss new methods for tolerance simulations, eliminating stray light, and maximizing image quality of a flys-eye design that slices the telescopes focus onto 6 non-buttable, IR detectors. We also include a discussion of safety constraints for a robotic telescope.
201 - I. Sagiv , A. Gal-Yam , E. O. Ofek 2013
The time-variable electromagnetic sky has been well-explored at a wide range of wavelengths. Numerous high-energy space missions take advantage of the dark Gamma-ray and X-ray sky and utilize very wide field detectors to provide almost continuous mon itoring of the entire celestial sphere. In visible light, new wide-field ground-based surveys cover wide patches of sky with ever decreasing cadence, progressing from monthly-weekly time scale surveys to sub-night sampling. In the radio, new powerful instrumentation offers unprecedented sensitivity over wide fields of view, with pathfinder experiments for even more ambitious programs underway. In contrast, the ultra-violet (UV) variable sky is relatively poorly explored, even though it offers exciting scientific prospects. Here, we review the potential scientific impact of a wide-field UV survey on the study of explosive and other transient events, as well as known classes of variable objects, such as active galactic nuclei and variable stars. We quantify our predictions using a fiducial set of observational parameters which are similar to those envisaged for the proposed ULTRASAT mission. We show that such a mission would be able to revolutionize our knowledge about massive star explosions by measuring the early UV emission from hundreds of events, revealing key physical parameters of the exploding progenitor stars. Such a mission would also detect the UV emission from many tens of tidal-disruption events of stars by super massive black holes at galactic nuclei and enable a measurement of the rate of such events. The overlap of such a wide-field UV mission with existing and planned gravitational-wave and high-energy neutrino telescopes makes it especially timely.
We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodic light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately +/-2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.
During the WISE at 5: Legacy and Prospects conference in Pasadena, CA -- which ran from February 10 - 12, 2015 -- attendees were invited to engage in an interactive session exploring the future uses of the Wide-field Infrared Survey Explorer (WISE) d ata. The 65 participants -- many of whom are extensive users of the data -- brainstormed the top questions still to be answered by the mission, as well as the complementary current and future datasets and additional processing of WISE/NEOWISE data that would aid in addressing these most important scientific questions. The results were mainly bifurcated between topics related to extragalactic studies (e.g. AGN, QSOs) and substellar mass objects. In summary, participants found that complementing WISE/NEOWISE data with cross-correlated multiwavelength surveys (e.g. SDSS, Pan-STARRS, LSST, Gaia, Euclid, etc.) would be highly beneficial for all future mission goals. Moreover, developing or implementing machine-learning tools to comb through and understand cross-correlated data was often mentioned for future uses. Finally, attendees agreed that additional processing of the data such as co-adding WISE and NEOWISE and extracting a multi-epoch photometric database and parallax and proper motion catalog would greatly improve the scientific results of the most important projects identified. In that respect, a project such as MaxWISE which would execute the most important additional processing and extraction as well as make the data and catalogs easily accessible via a public portal was deemed extremely important.
The Wide-field Infrared Survey Explorer (WISE), a NASA MIDEX mission, will survey the entire sky in four bands from 3.3 to 23 microns with a sensitivity 1000 times greater than the IRAS survey. The WISE survey will extend the Two Micron All Sky Surve y into the thermal infrared and will provide an important catalog for the James Webb Space Telescope. Using 1024x1024 HgCdTe and Si:As arrays at 3.3, 4.7, 12 and 23 microns, WISE will find the most luminous galaxies in the universe, the closest stars to the Sun, and it will detect most of the main belt asteroids larger than 3 km. The single WISE instrument consists of a 40 cm diamond-turned aluminum afocal telescope, a two-stage solid hydrogen cryostat, a scan mirror mechanism, and reimaging optics giving 5 resolution (full-width-half-maximum). The use of dichroics and beamsplitters allows four color images of a 47x47 field of view to be taken every 8.8 seconds, synchronized with the orbital motion to provide total sky coverage with overlap between revolutions. WISE will be placed into a Sun-synchronous polar orbit on a Delta 7320-10 launch vehicle. The WISE survey approach is simple and efficient. The three-axis-stabilized spacecraft rotates at a constant rate while the scan mirror freezes the telescope line of sight during each exposure. WISE is currently in its Preliminary Design Phase, with the mission Preliminary Design Review scheduled for July, 2005. WISE is scheduled to launch in mid 2009; the project web site can be found at www.wise.ssl.berkeley.edu.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا