ﻻ يوجد ملخص باللغة العربية
The recent opening of gravitational wave astronomy has shifted the debate about black hole mimickers from a purely theoretical arena to a phenomenological one. In this respect, missing a definitive quantum gravity theory, the possibility to have simple, meta-geometries describing in a compact way alternative phenomenologically viable scenarios is potentially very appealing. A recently proposed metric by Simpson and Visser is exactly an example of such meta-geometry describing, for different values of a single parameter, different non-rotating black hole mimickers. Here, we employ the Newman--Janis procedure to construct a rotating generalisation of such geometry. We obtain a stationary, axially symmetric metric that depends on mass, spin and an additional real parameter $ell$. According to the value of such parameter, the metric may represent a rotating traversable wormhole, a rotating regular black hole with one or two horizons, or three more limiting cases. By studying the internal and external rich structure of such solutions, we show that the obtained metric describes a family of interesting and simple regular geometries providing viable Kerr black hole mimickers for future phenomenological studies.
LIGO and Virgo have recently observed a number of gravitational wave (GW) signals that are fully consistent with being emitted by binary black holes described by general relativity. However, there are theoretical proposals of exotic objects that can
In this paper we analyze some interesting features of the thermodynamics of the rotating BTZ black hole from the Carath{e}odory axiomatic postulate, for which, we exploit the appropriate Pfaffian form. The allowed adiabatic transformations are then o
We study the motion of a charged particle around a weakly magnetized rotating black hole. We classify the fate of a charged particle kicked out from the innermost stable circular orbit. We find that the final fate of the charged particle depends most
Even though black hole scalarization is extensively studied recently, little has been done in the direction of understanding the dynamics of this process, especially in the rapidly rotating regime. In the present paper, we focus exactly on this probl
Motivated by the lack of rotating solutions sourced by matter in General Relativity as well as in modified gravity theories, we extend a recently discovered exact rotating solution of the minimal Einstein-scalar theory to its counterpart in Eddington