ترغب بنشر مسار تعليمي؟ اضغط هنا

Tomography of the unique on-going jet in the planetary nebula NGC 2392

83   0   0.0 ( 0 )
 نشر من قبل Martin A. Guerrero
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Jets (fast collimated outflows) are claimed to be the main shaping agent of the most asymmetric planetary nebula (PNe) as they impinge on the circumstellar material at late stages of the asymptotic giant branch (AGB) phase. The first jet detected in a PN was that of NGC 2392, yet there is no available image because its low surface brightness contrast with the bright nebular emission. Here we take advantage from the tomographic capabilities of GTC MEGARA high-dispersion integral field spectroscopic observations of the jet in NGC 2392 to gain unprecedented details of its morphology and kinematics. The jet of NGC 2392 is found to emanate from the central star, break through the walls of the inner shell of this iconic PN and extend outside the nebulas outermost regions with an S-shaped morphology suggestive of precession. At odds with the fossil jets found in mature PNe, the jet in NGC 2392 is currently being collimated and launched. The high nebular excitation of NGC 2392, which implies a He$^{++}$/He ionization fraction too high to be attributed to the known effective temperature of the star, has been proposed in the past to hint at the presence of a hot white dwarf companion. In conjunction with the hard X-ray emission from the central star, the present-day jet collimation would support the presence of such a double-degenerate system where one component undergoes accretion from a remnant circumbinary disk of the common envelope phase.



قيم البحث

اقرأ أيضاً

The Chandra X-ray Observatory has detected relatively hard X-ray emission from the central stars of several planetary nebulae (PNe). A subset have no known late-type companions, making it very difficult to isolate which of several competing mechanism s may be producing the X-ray emission. The central star of NGC 2392 is one of the most vexing members, with substantial indirect evidence for a hot white dwarf (WD) companion. Here we report on the results of a radial velocity (RV) monitoring campaign of its central star with the HERMES echelle spectrograph of the Flemish 1.2 m Mercator telescope. We discover a single-lined spectroscopic binary with an orbital period of $1.902208pm0.000013$ d and a RV semi-amplitude of $9.96pm0.13$ km/s. The high degree of nebula ionisation requires a WD companion ($Mgtrsim0.6 M_odot$), which the mass-function supports at orbital inclinations $lesssim$7 deg, in agreement with the nebula orientation of 9 deg. The hard component of the X-ray spectrum may be explained by the companion accreting mass from the wind of the Roche lobe filling primary, while the softer component may be due to colliding winds. A companion with a stronger wind than the primary could produce the latter and would be consistent with models of the observed diffuse X-ray emission detected in the nebula. The diffuse X-rays may also be powered by the jets of up to 180 km/s and active accretion would imply that they could be the first active jets of a post-common-envelope PN, potentially making NGC 2392 an invaluable laboratory to study jet formation physics. The 1.9 d orbital period rules out a double-degenerate merger leading to a Type Ia supernova and the weak wind of the primary likely also precludes a single-degenerate scenario. We suggest that a hard X-ray spectrum, in the absence of a late-type companion, could be a powerful tool to identify accreting WD companions.
The HASH (Hong Kong/ AAO/ Strasbourg/ H{alpha}) planetary nebula research platform is a unique data repository with a graphical interface and SQL capability that offers the community powerful, new ways to undertake Galactic PN studies. HASH currently contains multi-wavelength images, spectra, positions, sizes, morphologies and other data whenever available for 2401 true, 447 likely, and 692 possible Galactic PNe, for a total of 3540 objects. An additional 620 Galactic post-AGB stars, pre-PNe, and PPN candidates are included. All objects were classified and evaluated following the precepts and procedures established and developed by our group over the last 15 years. The complete database contains over 6,700 Galactic objects including the many mimics and related phenomena previously mistaken or confused with PNe. Curation and updating currently occurs on a weekly basis to keep the repository as up to date as possible until the official release of HASH v1 planned in the near future.
We present the first direct image of the high-metallicity gas component in a planetary nebula (NGC 6778), taken with the OSIRIS Blue Tunable Filter centered on the O II 4649+50 angstroms optical recombination lines (ORLs) at the 10.4m Gran Telescopio Canarias. We show that the emission of these faint O II ORLs is concentrated in the central parts of the planetary nebula and is not spatially coincident either with emission coming from the bright [O III] 5007 angstroms collisionally excited line (CEL) or the bright H alpha recombination line. From monochromatic emission line maps taken with VIMOS at the 8.2m Very Large Telescope, we find that the spatial distribution of the emission from the auroral [O III] 4363 line resembles that of the O II ORLs but differs from nebular [O III] 5007 CEL distribution, implying a temperature gradient inside the planetary nebula. The centrally peaked distribution of the O II emission and the differences with the [O III] and H I emission profiles are consistent with the presence of an H-poor gas whose origin may be linked to the binarity of the central star. However, determination of the spatial distribution of the ORLs and CELs in other PNe, and a comparison of their dynamics is needed to further constrain the geometry and ejection mechanism of the metal-rich (H-poor) component and hence, understand the origin of the abundance discrepancy problem in PNe.
The planetary nebula (PN) NGC 5189 around a Wolf-Rayet [WO] central star demonstrates one of the most remarkable complex morphologies among PNe with many multi-scale structures, showing evidence of multiple outbursts from an AGB progenitor. In this s tudy we use multi-wavelength Hubble Space Telescope Wide Field Camera 3 (WFC3) observations to study the morphology of the inner 0.3 pc $times$ 0.2 pc region surrounding the central binary that appears to be a relic of a more recent outburst of the progenitor AGB star. We applied diagnostic diagrams based on emission line ratios of H$alpha$ $lambda$6563, [O III] $lambda$5007, and [S II] $lambdalambda$6717,6731 images to identify the location and morphology of low-ionization structures within the inner nebula. We distinguished two inner, low-ionization envelopes from the ionized gas, within a radius of 55 arcsec ($sim$ 0.15 pc) extending from the central star: a large envelope expanding toward the northeast, and its smaller counterpart envelope in the opposite direction toward the southwest of the nebula. These low-ionization envelopes are surrounded by a highly-ionized gaseous environment. We believe that these low-ionization expanding envelopes are a result of a powerful outburst from the post-AGB star that created shocked wind regions as they propagate through the previously expelled material along a symmetric axis. Our diagnostic mapping using high-angular resolution line emission imaging can provide a novel approach to detection of low-ionization regions in other PNe, especially those showing a complex multi-scale morphology.
Recent studies have indicated that triple star systems may play a role in the formation of an appreciable number of planetary nebulae, however only one triple central star is known to date (and that system is likely too wide to have had much influenc e on the evolution of its component stars). Here, we consider the possibility that Sh 2-71 was formed by a triple system which has since broken apart. We present the discovery of two regions of emission, seemingly aligned with the proposed tertiary orbit (i.e. in line with the axis formed by the two candidate central star systems previously considered in the literature). We also perform a few simple tests of the plausibility of the triple hypothesis based on the observed properties (coordinates, radial velocities, distances and proper motions) of the stars observed close to the projected centre of the nebula, adding further support through numerical integrations of binary orbits responding to mass loss. Although a number of open questions remain, we conclude that Sh 2-71 is currently one of the best candidates for planetary nebula formation influenced by triple-star interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا