On a divisor of the central binomial coefficient


الملخص بالإنكليزية

It is well known that for all $ngeq1$ the number $n+ 1$ is a divisor of the central binomial coefficient ${2nchoose n}$. Since the $n$th central binomial coefficient equals the number of lattice paths from $(0,0)$ to $(n,n)$ by unit steps north or east, a natural question is whether there is a way to partition these paths into sets of $n+ 1$ paths or $n+1$ equinumerous sets of paths. The Chung-Feller theorem gives an elegant answer to this question. We pose and deliver an answer to the analogous question for $2n-1$, another divisor of ${2nchoose n}$. We then show our main result follows from a more general observation regarding binomial coefficients ${nchoose k}$ with $n$ and $k$ relatively prime. A discussion of the case where $n$ and $k$ are not relatively prime is also given, highlighting the limitations of our methods. Finally, we come full circle and give a novel interpretation of the Catalan numbers.

تحميل البحث