We consider the subalgebras of split real, non-twisted affine Kac-Moody Lie algebras that are fixed by the Chevalley involution. These infinite-dimensional Lie algebras are not of Kac-Moody type and admit finite-dimensional unfaithful representations. We exhibit a formulation of these algebras in terms of $mathbb{N}$-graded Lie algebras that allows the construction of a large class of representations using the techniques of induced representations. We study how these representations relate to previously established spinor representations as they arise in the theory of supergravity.