ﻻ يوجد ملخص باللغة العربية
In this paper, we study the emph{type graph}, namely a bipartite graph induced by a joint type. We investigate the maximum edge density of induced bipartite subgraphs of this graph having a number of vertices on each side on an exponential scale. This can be seen as an isoperimetric problem. We provide asymptotically sharp bounds for the exponent of the maximum edge density as the blocklength goes to infinity. We also study the biclique rate region of the type graph, which is defined as the set of $left(R_{1},R_{2}right)$ such that there exists a biclique of the type graph which has respectively $e^{nR_{1}}$ and $e^{nR_{2}}$ vertices on two sides. We provide asymptotically sharp bounds for the biclique rate region as well. We then apply our results and proof ideas to noninteractive simulation problems. We completely characterize the exponents of maximum and minimum joint probabilities when the marginal probabilities vanish exponentially fast with given exponents. These results can be seen as strong small-set expansion theorems. We extend the noninteractive simulation problem by replacing Boolean functions with arbitrary nonnegative functions, and obtain new hypercontractivity inequalities which are stronger than the common hypercontractivity inequalities. Furthermore, as an application of our results, a new outer bound for the zero-error capacity region of the binary adder channel is provided, which improves the previously best known bound, due to Austrin, Kaski, Koivisto, and Nederlof. Our proofs in this paper are based on the method of types, linear algebra, and coupling techniques.
The hypercontractive inequality is a fundamental result in analysis, with many applications throughout discrete mathematics, theoretical computer science, combinatorics and more. So far, variants of this inequality have been proved mainly for product
The second authors $omega$, $Delta$, $chi$ conjecture proposes that every graph satisties $chi leq lceil frac 12 (Delta+1+omega)rceil$. In this paper we prove that the conjecture holds for all claw-free graphs. Our approach uses the structure theorem
For various purposes and, in particular, in the context of data compression, a graph can be examined at three levels. Its structure can be described as the unlabeled version of the graph; then the labeling of its structure can be added; and finally,
In this article we start a systematic study of the bi-Lipschitz geometry of lamplighter graphs. We prove that lamplighter graphs over trees bi-Lipschitzly embed into Hamming cubes with distortion at most~$6$. It follows that lamplighter graphs over c
This work considers new entropy-based proofs of some known, or otherwise refined, combinatorial bounds for bipartite graphs. These include upper bounds on the number of the independent sets, lower bounds on the minimal number of colors in constrained