ترغب بنشر مسار تعليمي؟ اضغط هنا

Over-the-Air Computation with Spatial-and-Temporal Correlated Signals

79   0   0.0 ( 0 )
 نشر من قبل Wanchun Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Over-the-air computation (AirComp) leveraging the superposition property of wireless multiple-access channel (MAC), is a promising technique for effective data collection and computation of large-scale wireless sensor measurements in Internet of Things applications. Most existing work on AirComp only considered computation of spatial-and-temporal independent sensor signals, though in practice different sensor measurement signals are usually correlated. In this letter, we propose an AirComp system with spatial-and-temporal correlated sensor signals, and formulate the optimal AirComp policy design problem for achieving the minimum computation mean-squared error (MSE). We develop the optimal AirComp policy with the minimum computation MSE in each time step by utilizing the current and the previously received signals. We also propose and optimize a low-complexity AirComp policy in closed form with the performance approaching to the optimal policy.



قيم البحث

اقرأ أيضاً

Over-the-air computation (AirComp), which leverages the superposition property of wireless multiple-access channel (MAC) and the mathematical tool of function representation, has been considered as a promising technique for effective collection and c omputation of massive sensor data in wireless Big Data applications. In most of the existing work on AirComp, optimal system-parameter design is commonly considered under the peak-power constraint of each sensor. In this paper, we propose an optimal transmitter-receiver (Tx-Rx) parameter design problem to minimize the computation mean-squared error (MSE) of an AirComp system under the sum-power constraint of the sensors. We solve the non-convex problem and obtain a closed-form solution. Also, we investigate another problem that minimizes the sum power of the sensors under the constraint of computation MSE. Our results show that in both of the problems, the sensors with poor and good channel conditions should use less power than the ones with moderate channel conditions.
Over-the-air computation (OAC) is a promising technique to realize fast model aggregation in the uplink of federated edge learning. OAC, however, hinges on accurate channel-gain precoding and strict synchronization among the edge devices, which are c hallenging in practice. As such, how to design the maximum likelihood (ML) estimator in the presence of residual channel-gain mismatch and asynchronies is an open problem. To fill this gap, this paper formulates the problem of misaligned OAC for federated edge learning and puts forth a whitened matched filtering and sampling scheme to obtain oversampled, but independent, samples from the misaligned and overlapped signals. Given the whitened samples, a sum-product ML estimator and an aligned-sample estimator are devised to estimate the arithmetic sum of the transmitted symbols. In particular, the computational complexity of our sum-product ML estimator is linear in the packet length and hence is significantly lower than the conventional ML estimator. Extensive simulations on the test accuracy versus the average received energy per symbol to noise power spectral density ratio (EsN0) yield two main results: 1) In the low EsN0 regime, the aligned-sample estimator can achieve superior test accuracy provided that the phase misalignment is non-severe. In contrast, the ML estimator does not work well due to the error propagation and noise enhancement in the estimation process. 2) In the high EsN0 regime, the ML estimator attains the optimal learning performance regardless of the severity of phase misalignment. On the other hand, the aligned-sample estimator suffers from a test-accuracy loss caused by phase misalignment.
Over-the-air computation (AirComp) has been recognized as a low-latency solution for wireless sensor data fusion, where multiple sensors send their measurement signals to a receiver simultaneously for computation. Most existing work only considered p erforming AirComp over a single frequency channel. However, for a sensor network with a massive number of nodes, a single frequency channel may not be sufficient to accommodate the large number of sensors, and the AirComp performance will be very limited. So it is highly desirable to have more frequency channels for large-scale AirComp systems to benefit from multi-channel diversity. In this letter, we propose an $M$-frequency AirComp system, where each sensor selects a subset of the $M$ frequencies and broadcasts its signal over these channels under a certain power constraint. We derive the optimal sensors transmission and receivers signal processing methods separately, and develop an algorithm for joint design to achieve the best AirComp performance. Numerical results show that increasing one frequency channel can improve the AirComp performance by threefold compared to the single-frequency case.
313 - Xiang Ma , Haijian Sun , Qun Wang 2021
A new machine learning (ML) technique termed as federated learning (FL) aims to preserve data at the edge devices and to only exchange ML model parameters in the learning process. FL not only reduces the communication needs but also helps to protect the local privacy. Although FL has these advantages, it can still experience large communication latency when there are massive edge devices connected to the central parameter server (PS) and/or millions of model parameters involved in the learning process. Over-the-air computation (AirComp) is capable of computing while transmitting data by allowing multiple devices to send data simultaneously by using analog modulation. To achieve good performance in FL through AirComp, user scheduling plays a critical role. In this paper, we investigate and compare different user scheduling policies, which are based on various criteria such as wireless channel conditions and the significance of model updates. Receiver beamforming is applied to minimize the mean-square-error (MSE) of the distortion of function aggregation result via AirComp. Simulation results show that scheduling based on the significance of model updates has smaller fluctuations in the training process while scheduling based on channel condition has the advantage on energy efficiency.
Federated learning (FL) as a promising edge-learning framework can effectively address the latency and privacy issues by featuring distributed learning at the devices and model aggregation in the central server. In order to enable efficient wireless data aggregation, over-the-air computation (AirComp) has recently been proposed and attracted immediate attention. However, fading of wireless channels can produce aggregate distortions in an AirComp-based FL scheme. To combat this effect, the concept of dynamic learning rate (DLR) is proposed in this work. We begin our discussion by considering multiple-input-single-output (MISO) scenario, since the underlying optimization problem is convex and has closed-form solution. We then extend our studies to more general multiple-input-multiple-output (MIMO) case and an iterative method is derived. Extensive simulation results demonstrate the effectiveness of the proposed scheme in reducing the aggregate distortion and guaranteeing the testing accuracy using the MNIST and CIFAR10 datasets. In addition, we present the asymptotic analysis and give a near-optimal receive beamforming design solution in closed form, which is verified by numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا