ﻻ يوجد ملخص باللغة العربية
Although impressive results have been achieved for age progression and regression, there remain two major issues in generative adversarial networks (GANs)-based methods: 1) conditional GANs (cGANs)-based methods can learn various effects between any two age groups in a single model, but are insufficient to characterize some specific patterns due to completely shared convolutions filters; and 2) GANs-based methods can, by utilizing several models to learn effects independently, learn some specific patterns, however, they are cumbersome and require age label in advance. To address these deficiencies and have the best of both worlds, this paper introduces a dropout-like method based on GAN~(RoutingGAN) to route different effects in a high-level semantic feature space. Specifically, we first disentangle the age-invariant features from the input face, and then gradually add the effects to the features by residual routers that assign the convolution filters to different age groups by dropping out the outputs of others. As a result, the proposed RoutingGAN can simultaneously learn various effects in a single model, with convolution filters being shared in part to learn some specific effects. Experimental results on two benchmarked datasets demonstrate superior performance over existing methods both qualitatively and quantitatively.
Age progression and regression aim to synthesize photorealistic appearance of a given face image with aging and rejuvenation effects, respectively. Existing generative adversarial networks (GANs) based methods suffer from the following three major is
Estimation of bone age from hand radiographs is essential to determine skeletal age in diagnosing endocrine disorders and depicting the growth status of children. However, existing automatic methods only apply their models to test images without cons
Despite the remarkable progress in face recognition related technologies, reliably recognizing faces across ages still remains a big challenge. The appearance of a human face changes substantially over time, resulting in significant intra-class varia
Background: Patients with neovascular age-related macular degeneration (AMD) can avoid vision loss via certain therapy. However, methods to predict the progression to neovascular age-related macular degeneration (nvAMD) are lacking. Purpose: To devel
Unsupervised model transfer has the potential to greatly improve the generalizability of deep models to novel domains. Yet the current literature assumes that the separation of target data into distinct domains is known as a priori. In this paper, we