ﻻ يوجد ملخص باللغة العربية
Inverse problems are ubiquitous because they formalize the integration of data with mathematical models. In many scientific applications the forward model is expensive to evaluate, and adjoint computations are difficult to employ; in this setting derivative-free methods which involve a small number of forward model evaluations are an attractive proposition. Ensemble Kalman based interacting particle systems (and variants such as consensus based and unscented Kalman approaches) have proven empirically successful in this context, but suffer from the fact that they cannot be systematically refined to return the true solution, except in the setting of linear forward models. In this paper, we propose a new derivative-free approach to Bayesian inversion, which may be employed for posterior sampling or for maximum a posteriori estimation, and may be systematically refined. The method relies on a fast/slow system of stochastic differential equations for the local approximation of the gradient of the log-likelihood appearing in a Langevin diffusion. Furthermore the method may be preconditioned by use of information from ensemble Kalman based methods (and variants), providing a methodology which leverages the documented advantages of those methods, whilst also being provably refineable. We define the methodology, highlighting its flexibility and many variants, provide a theoretical analysis of the proposed approach, and demonstrate its efficacy by means of numerical experiments.
The computer-assisted modeling of re-entrant production lines, and, in particular, simulation scalability, is attracting a lot of attention due to the importance of such lines in semiconductor manufacturing. Re-entrant flows lead to competition for p
Many physical systems are well described on domains which are relatively large in some directions but relatively thin in other directions. In this scenario we typically expect the system to have emergent structures that vary slowly over the large dim
The Equation-Free approach to efficient multiscale numerical computation marries trusted micro-scale simulations to a framework for numerical macro-scale reduction -- the patch dynamics scheme. A recent novel patch scheme empowered the Equation-Free
A series of benchmarks based on the physical situation of phase inversion between two immiscible liquids is presented. These benchmarks aim at progressing toward the direct numerical simulation of two-phase flows. Several CFD codes developed in Frenc
[abridged] Inversion techniques are the most powerful methods to obtain information about the thermodynamical and magnetic properties of solar and stellar atmospheres. In the last years, we have witnessed the development of highly sophisticated inver