ﻻ يوجد ملخص باللغة العربية
Symplectic integrators that preserve the geometric structure of Hamiltonian flows and do not exhibit secular growth in energy errors are suitable for the long-term integration of N-body Hamiltonian systems in the solar system. However, the construction of explicit symplectic integrators is frequently difficult in general relativity because all variables are inseparable. Moreover, even if two analytically integrable splitting parts exist in a relativistic Hamiltonian, all analytical solutions are not explicit functions of proper time. Naturally, implicit symplectic integrators, such as the midpoint rule, are applicable to this case. In general, these integrators are numerically more expensive to solve than same-order explicit symplectic algorithms. To address this issue, we split the Hamiltonian of Schwarzschild spacetime geometry into four integrable parts with analytical solutions as explicit functions of proper time. In this manner, second- and fourth-order explicit symplectic integrators can be easily made available. The new algorithms are also useful for modeling the chaotic motion of charged particles around a black hole with an external magnetic field. They demonstrate excellent long-term performance in maintaining bounded Hamiltonian errors and saving computational cost when appropriate proper time steps are adopted.
In previous papers, explicit symplectic integrators were designed for nonrotating black holes, such as a Schwarzschild black hole. However, they fail to work in the Kerr spacetime because not all variables can be separable, or not all splitting parts
In a previous paper, second- and fourth-order explicit symplectic integrators were designed for a Hamiltonian of the Schwarzschild black hole. Following this work, we continue to trace the possibility of the construction of explicit symplectic integr
We give a possible splitting method to a Hamiltonian for the description of charged particles moving around the Reissner-Nordstrom-(anti)-de Sitter black hole with an external magnetic field. This Hamiltonian can be separated into six analytical solv
The purpose of this note is to point out that a naive application of symplectic integration schemes for Hamiltonian systems with constraints such as SHAKE or RATTLE which preserve holonomic constraints encounters difficulties when applied to the nume
The recent detections of gravitational waves from binary systems of black holes are in remarkable agreement with the predictions of General Relativity. In this pedagogical mini-review, I will go through the physics of the different phases of the evol