ﻻ يوجد ملخص باللغة العربية
The fragile complexity of a comparison-based algorithm is $f(n)$ if each input element participates in $O(f(n))$ comparisons. In this paper, we explore the fragile complexity of algorithms adaptive to various restrictions on the input, i.e., algorithms with a fragile complexity parameterized by a quantity other than the input size n. We show that searching for the predecessor in a sorted array has fragile complexity ${Theta}(log k)$, where $k$ is the rank of the query element, both in a randomized and a deterministic setting. For predecessor searches, we also show how to optimally reduce the amortized fragile complexity of the elements in the array. We also prove the following results: Selecting the $k$-th smallest element has expected fragile complexity $O(log log k)$ for the element selected. Deterministically finding the minimum element has fragile complexity ${Theta}(log(Inv))$ and ${Theta}(log(Runs))$, where $Inv$ is the number of
We initiate a study of algorithms with a focus on the computational complexity of individual elements, and introduce the fragile complexity of comparison-based algorithms as the maximal number of comparisons any individual element takes part in. We g
The priority model was introduced by Borodin, Rackoff, and Nielsen (2003) to capture greedy-like algorithms. Motivated by the success of advice complexity in the area of online algorithms, Borodin et al. (2020) extended the fixed priority model to in
The priority model of greedy-like algorithms was introduced by Borodin, Nielsen, and Rackoff in 2002. We augment this model by allowing priority algorithms to have access to advice, i.e., side information precomputed by an all-powerful oracle. Obtain
The growing need to deal with massive instances motivates the design of algorithms balancing the quality of the solution with applicability. For the latter, an important measure is the emph{adaptive complexity}, capturing the number of sequential rou
In the problem of adaptive compressed sensing, one wants to estimate an approximately $k$-sparse vector $xinmathbb{R}^n$ from $m$ linear measurements $A_1 x, A_2 x,ldots, A_m x$, where $A_i$ can be chosen based on the outcomes $A_1 x,ldots, A_{i-1} x