ﻻ يوجد ملخص باللغة العربية
Optical wireless communications (OWC) utilizing infrared or visible light as the carrier attracts great attention in 6G research. Resonant beam communications (RBCom) is an OWC technology which simultaneously satisfies the needs of non-mechanical mobility and high signal-to-noise ratio~(SNR). It has the self-alignment feature and therefore avoids positioning and pointing operations. However, RBCom undergoes echo interference. Here we propose an echo-interference-free RBCom system design based on second harmonic generation. The transmitter and the receiver constitute a spatially separated laser resonator, in which the retro-reflective resonant beam is formed and tracks the receiver automatically. This structure provides the channel with adaptive capability in beamforming and alignment, which is similar to the concept of intelligent reflecting surface (IRS) enhanced communications, but without hardware and software controllers. Besides, we establish an analytical model to evaluate the beam radius, the beam power, and the channel capacity. The results show that our system achieves longer distance and smaller beam diameter for the transmission beyond 10 Gbit/s, compared with the existing OWC technologies.
Multi-LiDAR systems have been prevalently applied in modern autonomous vehicles to render a broad view of the environments. The rapid development of 5G wireless technologies has brought a breakthrough for current cellular vehicle-to-everything (C-V2X
This article describes the design methodology to achieve reflective diode-based parametric frequency selective limiters (pFSLs) with low power thresholds ($P_{th}$) and sub-dB insertion-loss values ($IL^{s.s}$) for driving power levels ($P_{in}$) low
This paper investigates the achievable rate maximization problem of a downlink unmanned aerial vehicle (UAV)-enabled communication system aided by an intelligent omni-surface (IOS). Different from the state-of-the-art reconfigurable intelligent surfa
The emergence of the connected and automated vehicle (CAV) technology enables numerous advanced applications in our transportation system, benefiting our daily travels in terms of safety, mobility, and sustainability. However, vehicular communication
We analyse the performance of a communication link assisted by an intelligent reflective surface (IRS) positioned in the far field of both the source and the destination. A direct link between the transmitting and receiving devices is assumed to exis