ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping stellar surfaces I: Degeneracies in the rotational light curve problem

72   0   0.0 ( 0 )
 نشر من قبل Rodrigo Luger
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thanks to missions like Kepler and TESS, we now have access to tens of thousands of high precision, fast cadence, and long baseline stellar photometric observations. In principle, these light curves encode a vast amount of information about stellar variability and, in particular, about the distribution of starspots and other features on their surfaces. Unfortunately, the problem of inferring stellar surface properties from a rotational light curve is famously ill-posed, as it often does not admit a unique solution. Inference about the number, size, contrast, and location of spots can therefore depend very strongly on the assumptions of the model, the regularization scheme, or the prior. The goal of this paper is twofold: (1) to explore the various degeneracies affecting the stellar light curve inversion problem and their effect on what can and cannot be learned from a stellar surface given unresolved photometric measurements; and (2) to motivate ensemble analyses of the light curves of many stars at once as a powerful data-driven alternative to common priors adopted in the literature. We further derive novel results on the dependence of the null space on stellar inclination and limb darkening and show that single-band photometric measurements cannot uniquely constrain quantities like the total spot coverage without the use of strong priors. This is the first in a series of papers devoted to the development of novel algorithms and tools for the analysis of stellar light curves and spectral time series, with the explicit goal of enabling statistically robust inference about their surface properties.



قيم البحث

اقرأ أيضاً

The use of Gaussian processes (GPs) as models for astronomical time series datasets has recently become almost ubiquitous, given their ease of use and flexibility. GPs excel in particular at marginalization over the stellar signal in cases where the variability due to starspots rotating in and out of view is treated as a nuisance, such as in exoplanet transit modeling. However, these effective models are less useful in cases where the starspot signal is of primary interest since it is not obvious how the parameters of the GP model are related to the physical properties of interest, such as the size, contrast, and latitudinal distribution of the spots. Instead, it is common practice to explicitly model the effect of individual starspots on the light curve and attempt to infer their properties via optimization or posterior inference. Unfortunately, this process is degenerate, ill-posed, and often computationally intractable when applied to stars with more than a few spots and/or to ensembles of many light curves. In this paper, we derive a closed-form expression for the mean and covariance of a Gaussian process model that describes the light curve of a rotating, evolving stellar surface conditioned on a given distribution of starspot sizes, contrasts, and latitudes. We demonstrate that this model is correctly calibrated, allowing one to robustly infer physical parameters of interest from one or more stellar light curves, including the typical radii and the mean and variance of the latitude distribution of starspots. Our GP has far-ranging implications for understanding the variability and magnetic activity of stars from both light curves and radial velocity (RV) measurements, as well as for robustly modeling correlated noise in both transiting and RV exoplanet searches. Our implementation is efficient, user-friendly, and open source, available as the Python package starry-process.
The new photometric data on pulsating Ap star HD~27463 obtained recently with the Transiting Exoplanet Survey Satellite (textit{TESS}) are analysed to search for variability. Our analysis shows that HD~27463 exhibits two types of photometric variabil ity. The low frequency variability with the period $P$ =~2.834274 $pm$ 0.000008 d can be explained in terms of axial stellar rotation assuming the oblique magnetic rotator model and presence of surface abundance/brightness spots, while the detected high-frequency variations are characteristics of $delta$~Scuti pulsations. From the analysis of Balmer line profiles visible in two FEROS spectra of HD~27463 we have derived its effective temperature and surface gravity, finding values that are close to those published for this star in the textit{TESS} Input Catalogue (TIC). Knowing the rotation period and the v$sin{i}$ value estimated from the fitting of Balmer line profiles we found that the rotational axis is inclined to the line of sight with an angle of $i=33pm8deg$. Our best-fitting model of the observed pulsation modes results in an overshoot parameter value $f_{ov} = 0.014$ and values of global stellar parameters that are in good agreement with the data reported in the TIC and with the data derived from fitting Balmer line profiles. This model indicates an age of 5.0 $pm$~0.4 $times 10^8$~yrs, which corresponds to a core hydrogen fraction of 0.33.
An accurate knowledge of the neutron capture cross sections of 62,63Ni is crucial since both isotopes take key positions which affect the whole reaction flow in the weak s process up to A=90. No experimental value for the 63Ni(n,gamma) cross section exists so far, and until recently the experimental values for 62Ni(n,gamma) at stellar temperatures (kT=30 keV) ranged between 12 and 37 mb. This latter discrepancy could now be solved by two activations with following AMS using the GAMS setup at the Munich tandem accelerator which are also in perfect agreement with a recent time-of-flight measurement. The resulting (preliminary) Maxwellian cross section at kT=30 keV was determined to be <sigma>30keV = 23.4 +/- 4.6 mb. Additionally, we have measured the 64Ni(gamma,n)63Ni cross section close to threshold. Photoactivations at 13.5 MeV, 11.4 MeV and 10.3 MeV were carried out with the ELBE accelerator at Forschungszentrum Dresden-Rossendorf. A first AMS measurement of the sample activated at 13.5 MeV revealed a cross section smaller by more than a factor of 2 compared to NON-SMOKER predictions.
The analysis of exoplanetary atmospheres often relies upon the observation of transit or eclipse events. While very powerful, these snapshots provide mainly 1-dimensional information on the planet structure and do not easily allow precise latitude-lo ngitude characterisations. The phase curve technique, which consists of measuring the planet emission throughout its entire orbit, can break this limitation and provide useful 2-dimensional thermal and chemical constraints on the atmosphere. As of today however, computing performances have limited our ability to perform unified retrieval studies on the full set of observed spectra from phase curve observations at the same time. Here, we present a new phase curve model that enables fast, unified retrieval capabilities. We apply our technique to the combined phase curve data from the Hubble and Spitzer space telescopes of the hot-Jupiter WASP-43 b. We tested different scenarios and discussed the dependence of our solution to different assumptions in the model. Our more comprehensive approach suggests that multiple interpretation of this dataset are possible but our more complex model is consistent with the presence of thermal
While magnetic fields have long been considered to be important for the evolution of magnetic non-degenerate stars and compact stars, it has become clear in recent years that actually all of the stars are deeply affected. This is particularly true re garding their internal angular momentum distribution, but magnetic fields may also influence internal mixing processes and even the fate of the star. We propose a new framework for stellar evolution simulations, in which the interplay between magnetic field, rotation, mass loss, and changes in the stellar density and temperature distributions are treated self-consistently. For average large-scale stellar magnetic fields which are symmetric to the axis of rotation of the star, we derive 1D evolution equations for the toroidal and poloidal components from the mean-field MHD equation by applying Alfvens theorem, and a conservative form of the angular momentum transfer due to the Lorentz force is formulated. We implement our formalism into a numerical stellar evolution code and simulate the magneto-rotational evolution of 1.5 M$_odot$ stars. The Lorentz force aided by the $Omega$ effect imposes torsional Alfven waves propagating through the magnetized medium, leading to near-rigid rotation within the Alfven timescale. Our models with different initial spins and B-fields can reproduce the main observed properties of Ap/Bp stars. Calculations continued to the red-giant regime show a pronounced core-envelope coupling, which reproduces the core and surface rotation periods determined by asteroseismic observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا