ﻻ يوجد ملخص باللغة العربية
Quantum key distribution (QKD) is a promising technique for secure communication based on quantum mechanical principles. To improve the secure key rate of a QKD system, most studies on reconciliation primarily focused on improving the efficiency. With the increasing performance of QKD systems, the research priority has shifted to the improvement of both throughput and efficiency. In this paper, we propose a high performance solution of Cascade reconciliation, including a high-throughput-oriented framework and an integrated-optimization-oriented scheme. Benefiting from the fully utilizing computation and storage resources, effectively dealing with communication delays, the integrated-optimization-oriented parameters setting, etc., an excellent overall performance was achieved. Experimental results showed that, the throughput of up to 570Mbps with an efficiency of 1.038 was achieved, which, to our knowledge, was more than four times faster than any throughput previously demonstrated. Furthermore, throughputs on real data sets were capable of reaching up to 86Mbps even on embedded platforms. Additionally, our solution offers good adaptability to the fluctuating communication delay and quantum bit error rate (QBER). Based on our study, low performance (i.e. low power-consumption and cost-effective) CPU platforms will be sufficient for reconciliation in the existing and near-term QKD systems.
Reconciliation is a crucial procedure in post-processing of Quantum Key Distribution (QKD), which is used for correcting the error bits in sifted key strings. Although most studies about reconciliation of QKD focus on how to improve the efficiency, t
Quantum key distribution (QKD) is an important branch of quantum information science as it provides unconditional security to classical communications. For QKD research, a central issue is to improve the secure key rate (SKR) and transmission distanc
We suggest a new protocol for the information reconciliation stage of quantum key distribution based on polar codes. The suggested approach is based on the blind technique, which is proved to be useful for low-density parity-check (LDPC) codes. We sh
Information reconciliation is crucial for continuous-variable quantum key distribution (CV-QKD) because its performance affects the secret key rate and maximal secure transmission distance. Fixed-rate error correction codes limit the potential applic
Information reconciliation (IR) corrects the errors in sifted keys and ensures the correctness of quantum key distribution (QKD) systems. Polar codes-based IR schemes can achieve high reconciliation efficiency, however, the incidental high frame erro