ﻻ يوجد ملخص باللغة العربية
Let $S_k(n)$ be the maximum number of orientations of an $n$-vertex graph $G$ in which no copy of $K_k$ is strongly connected. For all integers $n$, $kgeq 4$ where $ngeq 5$ or $kgeq 5$, we prove that $S_k(n) = 2^{t_{k-1}(n)}$, where $t_{k-1}(n)$ is the number of edges of the $n$-vertex $(k-1)$-partite Turan graph $T_{k-1}(n)$, and that $T_{k-1}(n)$ is the only $n$-vertex graph with this number of orientations. Furthermore, $S_4(4) = 40$ and this maximality is achieved only by $K_4$.
Alon and Yuster proved that the number of orientations of any $n$-vertex graph in which every $K_3$ is transitively oriented is at most $2^{lfloor n^2/4rfloor}$ for $n geq 10^4$ and conjectured that the precise lower bound on $n$ should be $n geq 8$.
A tournament H is quasirandom-forcing if the following holds for every sequence (G_n) of tournaments of growing orders: if the density of H in G_n converges to the expected density of H in a random tournament, then (G_n) is quasirandom. Every transit
We count orientations of $G(n,p)$ avoiding certain classes of oriented graphs. In particular, we study $T_r(n,p)$, the number of orientations of the binomial random graph $G(n,p)$ in which every copy of $K_r$ is transitive, and $S_r(n,p)$, the number
We adapt the classical 3-decomposition of any 2-connected graph to the case of simple graphs (no loops or multiple edges). By analogy with the block-cutpoint tree of a connected graph, we deduce from this decomposition a bicolored tree tc(g) associat
We establish mild conditions under which a possibly irregular, sparse graph $G$ has many strong orientations. Given a graph $G$ on $n$ vertices, orient each edge in either direction with probability $1/2$ independently. We show that if $G$ satisfies