ﻻ يوجد ملخص باللغة العربية
We compare the star forming main sequence (SFMS) -- both integrated and resolved on 1kpc scales -- between the high-resolution TNG50 simulation of IllustrisTNG and observations from the 3D-HST slitless spectroscopic survey at z~1. Contrasting integrated star formation rates (SFRs), we find that the slope and normalization of the star-forming main sequence in TNG50 are quantitatively consistent with values derived by fitting observations from 3D-HST with the Prospector Bayesian inference framework. The previous offsets of 0.2-1dex between observed and simulated main sequence normalizations are resolved when using the updated masses and SFRs from Prospector. The scatter is generically smaller in TNG50 than in 3D-HST for more massive galaxies with M_*>10^10Msun, even after accounting for observational uncertainties. When comparing resolved star formation, we also find good agreement between TNG50 and 3D-HST: average specific star formation rate (sSFR) radial profiles of galaxies at all masses and radii below, on, and above the SFMS are similar in both normalization and shape. Most noteworthy, massive galaxies with M_*>10^10.5Msun, which have fallen below the SFMS due to ongoing quenching, exhibit a clear central SFR suppression, in both TNG50 and 3D-HST. In TNG this inside-out quenching is due to the supermassive black hole (SMBH) feedback model operating at low accretion rates. In contrast, the original Illustris simulation, without this same physical SMBH mechanism, does not reproduce the central SFR profile suppression seen in data. The observed sSFR profiles provide support for the TNG quenching mechanism and how it affects gas on kiloparsec scales in the centers of galaxies.
Radial age gradients hold the cumulative record of the multitude of physical processes driving the build-up of stellar populations and the ensuing star formation (SF) quenching process in galaxy bulges, therefore potentially sensitive discriminators
Physical and chemical properties of the interstellar medium (ISM) at sub-galactic ($sim$kpc) scales play an indispensable role in controlling the ability of gas to form stars. As part of the SMAUG (Simulating Multiscale Astrophysics to Understand Gal
We present a multi-wavelength integral field spectroscopic study of the low-z LIRG IRAS F11506-3851, on the basis of VIMOS and SINFONI (ESO-VLT) observations. The morphology and the 2D kinematics of the gaseous (neutral and ionized) and stellar compo
We investigate the build-up of galaxies at z~1 using maps of Halpha and stellar continuum emission for a sample of 57 galaxies with rest-frame Halpha equivalent widths >100 Angstroms in the 3D-HST grism survey. We find that the Halpha emission broadl
The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star forming main sequence. Using ~487,000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Galaxies at Apache