ﻻ يوجد ملخص باللغة العربية
This paper is a theoretical and numerical study of the uniform growth of a repeating sinusoidal imperfection in the line of a strut on a nonlinear elastic Winkler type foundation. The imperfection is introduced by considering an initially deformed shape which is a sine function with an half wavelength. The restoring force is either a bi-linear or an exponential profile. Periodic solutions of the equilibrium problem are found using three different approaches: a semi-analytical method, an explicit solution of a Galerkin method and a direct numerical resolution. These methods are found in very good agreement and show the existence of a maximum imperfection size which leads to a limit point in the equilibrium curve of the system. The existence of this limit point is very important since it governs the appearance of localization phenomena. Using the Galerkin method, we then establish an exact formula for this maximum imperfection size and we show that it does not depend on the choice of the restoring force. We also show that this method provides a better estimate with respect to previous publications. The decrease of the maximum compressive force supported by the beam as a function of the imperfection magnitude is also determined. We show that the leading term of the development has a different exponent than in subcritical buckling of elastic systems, and that the exponent values depend on the choice of the restoring force.
In this paper, we consider an imperfect finite beam lying on a nonlinear foundation, whose dimensionless stiffness is reduced from $1$ to $k$ as the beam deflection increases. Periodic equilibrium solutions are found analytically and are in good agre
We investigate the buckling under compression of a slender beam with a distributed lateral elastic support, for which there is an associated cost. For a given cost, we study the optimal choice of support to protect against Euler buckling. We show tha
In this paper, the growth-induced bending deformation of a thin hyperelastic plate is studied. For a plane-strain problem, the governing PDE system is formulated, which is composed of the mechanical equilibrium equations, the constraint equation and
We comment on a recent paper regarding the derivation of the magnetic field components of a solenoid in analytical form by proposing a different and simpler method
A proof is given of the vector identity proposed by Gubarev, Stodolsky and Zakarov that relates the volume integral of the square of a 3-vector field to non-local integrals of the curl and divergence of the field. The identity is applied to the case