ﻻ يوجد ملخص باللغة العربية
Since its inception, the choice modelling field has been dominated by theory-driven models. The recent emergence and growing popularity of machine learning models offer an alternative data-driven approach. Machine learning models, techniques and practices could help overcome problems and limitations of the current theory-driven modelling paradigm, e.g. relating to the ad-hocness in search for the optimal model specification, and theory-driven choice models inability to work with text and image data. However, despite the potential value of machine learning to improve choice modelling practices, the choice modelling field has been somewhat hesitant to embrace machine learning. The aim of this paper is to facilitate (further) integration of machine learning in the choice modelling field. To achieve this objective, we make the case that (further) integration of machine learning in the choice modelling field is beneficial for the choice modelling field, and, we shed light on where the benefits of further integration can be found. Specifically, we take the following approach. First, we clarify the similarities and differences between the two modelling paradigms. Second, we provide a literature overview on the use of machine learning for choice modelling. Third, we reinforce the strengths of the current theory-driven modelling paradigm and compare this with the machine learning modelling paradigm, Fourth, we identify opportunities for embracing machine learning for choice modelling, while recognising the strengths of the current theory-driven paradigm. Finally, we put forward a vision on the future relationship between the theory-driven choice models and machine learning.
The Random Utility Maximization model is by far the most adopted framework to estimate consumer choice behavior. However, behavioral economics has provided strong empirical evidence of irrational choice behavior, such as halo effects, that are incomp
Time averaging has been the traditional approach to handle mixed sampling frequencies. However, it ignores information possibly embedded in high frequency. Mixed data sampling (MIDAS) regression models provide a concise way to utilize the additional
Based on evidence gathered from a newly built large macroeconomic data set for the UK, labeled UK-MD and comparable to similar datasets for the US and Canada, it seems the most promising avenue for forecasting during the pandemic is to allow for gene
We study the impact of weak identification in discrete choice models, and provide insights into the determinants of identification strength in these models. Using these insights, we propose a novel test that can consistently detect weak identificatio
Consider a planner who has to decide whether or not to introduce a new policy to a certain local population. The planner has only limited knowledge of the policys causal impact on this population due to a lack of data but does have access to the publ