ترغب بنشر مسار تعليمي؟ اضغط هنا

Overview and status of EXCLAIM, the experiment for cryogenic large-aperture intensity mapping

75   0   0.0 ( 0 )
 نشر من قبل Giuseppe Cataldo PhD
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne far-infrared telescope that will survey star formation history over cosmological time scales to improve our understanding of why the star formation rate declined at redshift z < 2, despite continued clustering of dark matter. Specifically,EXCLAIM will map the emission of redshifted carbon monoxide and singly-ionized carbon lines in windows over a redshift range 0 < z < 3.5, following an innovative approach known as intensity mapping. Intensity mapping measures the statistics of brightness fluctuations of cumulative line emissions instead of detecting individual galaxies, thus enabling a blind, complete census of the emitting gas. To detect this emission unambiguously, EXCLAIM will cross-correlate with a spectroscopic galaxy catalog. The EXCLAIM mission uses a cryogenic design to cool the telescope optics to approximately 1.7 K. The telescope features a 90-cm primary mirror to probe spatial scales on the sky from the linear regime up to shot noise-dominated scales. The telescope optical elements couple to six {mu}-Spec spectrometer modules, operating over a 420-540 GHz frequency band with a spectral resolution of 512 and featuring microwave kinetic inductance detectors. A Radio Frequency System-on-Chip (RFSoC) reads out the detectors in the baseline design. The cryogenic telescope and the sensitive detectors allow EXCLAIM to reach high sensitivity in spectral windows of low emission in the upper atmosphere. Here, an overview of the mission design and development status since the start of the EXCLAIM project in early 2019 is presented.



قيم البحث

اقرأ أيضاً

The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a cryogenic balloon-borne instrument that will survey galaxy and star formation history over cosmological time scales. Rather than identifying individual objects, EXCLAIM will be a pathfinder to demonstrate an intensity mapping approach, which measures the cumulative redshifted line emission. EXCLAIM will operate at 420-540 GHz with a spectral resolution R=512 to measure the integrated CO and [CII] in redshift windows spanning 0 < z < 3.5. CO and [CII] line emissions are key tracers of the gas phases in the interstellar medium involved in star-formation processes. EXCLAIM will shed light on questions such as why the star formation rate declines at z < 2, despite continued clustering of the dark matter. The instrument will employ an array of six superconducting integrated grating-analog spectrometers (micro-spec) coupled to microwave kinetic inductance detectors (MKIDs). Here we present an overview of the EXCLAIM instrument design and status.
This work describes the optical design of the EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM). EXCLAIM is a balloon-borne telescope that will measure integrated line emission from carbon monoxide (CO) at redshifts z < 1 and ionize d carbon ([CII]) at redshifts z = 2.5-3.5 to probe star formation over cosmic time in cross-correlation with galaxy redshift surveys. The EXCLAIM instrument will observe at frequencies of 420--540 GHz using six microfabricated silicon integrated spectrometers with spectral resolving power R = 512 coupled to kinetic inductance detectors (KIDs). A completely cryogenic telescope cooled to a temperature below 5 K provides low-background observations between narrow atmospheric lines in the stratosphere. Off-axis reflective optics use a $90$-cm primary mirror to provide 4.2 full-width at half-maximum (FWHM) resolution at the center of the EXCLAIM band over a field of view of 22.5. Illumination of the 1.7 K cold stop combined with blackened baffling at multiple places in the optical system ensures low (< -40 dB) edge illumination of the primary to minimize spill onto warmer elements at the top of the dewar.
The Simons Observatory (SO) will make precision temperature and polarization measurements of the cosmic microwave background (CMB) using a series of telescopes which will cover angular scales between one arcminute and tens of degrees, contain over 60 ,000 detectors, and sample frequencies between 27 and 270 GHz. SO will consist of a six-meter-aperture telescope coupled to over 30,000 detectors along with an array of half-meter aperture refractive cameras, which together couple to an additional 30,000+ detectors. SO will measure fundamental cosmological parameters of our universe, find high redshift clusters via the Sunyaev-Zeldovich effect, constrain properties of neutrinos, and seek signatures of dark matter through gravitational lensing. In this paper we will present results of the simulations of the SO large aperture telescope receiver (LATR). We will show details of simulations performed to ensure the structural integrity and thermal performance of our receiver, as well as will present the results of finite element analyses (FEA) of designs for the structural support system. Additionally, a full thermal model for the LATR will be described. The model will be used to ensure we meet our design requirements. Finally, we will present the results of FEA used to identify the primary vibrational modes, and planned methods for suppressing these modes. Design solutions to each of these problems that have been informed by simulation will be presented.
The Baryon Mapping eXperiment (BMX) is an interferometric array designed as a pathfinder for a future post-reionization 21 cm intensity mapping survey. It consists of four 4-meter parabolic reflectors each having offset pyramidal horn feed, quad-ridg e orthomode transducer, temperature-stabilized RF amplification and filtering, and pulsed noise injection diode. An undersampling readout scheme uses 8-bit digitizers running at 1.1 Gsamples/sec to provide access to signals from 1.1 - 1.55 GHz (third Nyquist zone), corresponding to HI emission from sources at redshift $0 < z < 0.3$. An FX correlator is implemented in GPU and generates 28 GB/day of time-ordered visibility data. About 7,000 hours of data were collected from Jan. 2019 - May 2020, and we will present results on system performance including sensitivity, beam mapping studies, observations of bright celestial targets, and system electronics upgrades. BMX is a pathfinder for the proposed PUMA intensity mapping survey in the 2030s.
A pathfinder version of CHIME (the Canadian Hydrogen Intensity Mapping Experiment) is currently being commissioned at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC. The instrument is a hybrid cylindrical interferometer designed to measure the large scale neutral hydrogen power spectrum across the redshift range 0.8 to 2.5. The power spectrum will be used to measure the baryon acoustic oscillation (BAO) scale across this poorly probed redshift range where dark energy becomes a significant contributor to the evolution of the Universe. The instrument revives the cylinder design in radio astronomy with a wide field survey as a primary goal. Modern low-noise amplifiers and digital processing remove the necessity for the analog beamforming that characterized previous designs. The Pathfinder consists of two cylinders 37,m long by 20,m wide oriented north-south for a total collecting area of 1,500 square meters. The cylinders are stationary with no moving parts, and form a transit instrument with an instantaneous field of view of $sim$100,degrees by 1-2,degrees. Each CHIME Pathfinder cylinder has a feedline with 64 dual polarization feeds placed every $sim$30,cm which Nyquist sample the north-south sky over much of the frequency band. The signals from each dual-polarization feed are independently amplified, filtered to 400-800,MHz, and directly sampled at 800,MSps using 8 bits. The correlator is an FX design, where the Fourier transform channelization is performed in FPGAs, which are interfaced to a set of GPUs that compute the correlation matrix. The CHIME Pathfinder is a 1/10th scale prototype version of CHIME and is designed to detect the BAO feature and constrain the distance-redshift relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا