ترغب بنشر مسار تعليمي؟ اضغط هنا

The Evolution of NGC 7465 as Revealed by its Molecular Gas Properties

74   0   0.0 ( 0 )
 نشر من قبل Lisa M. Young
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Lisa M. Young




اسأل ChatGPT حول البحث

We present ALMA observations of CO isotopologues and high-density molecular tracers (HCN, HCO+, CN, etc.) in NGC 7465, an unusually gas-rich early-type galaxy that acquired its cold gas recently. In the inner 300 pc, the molecular gas kinematics are misaligned with respect to all other galaxy components; as the gas works its way inward it is torqued into polar orbits about the stellar kinematically-decoupled core (KDC), indicating that the stellar KDC is not related to the current gas accretion event. The galaxy also exhibits unusually high 12CO/13CO line ratios in its nucleus but typical 13CO/C18O ratios. Our calculations show that this result does not necessarily indicate an unusual [12CO/13CO] abundance ratio but rather that 12CO (1-0) is optically thin due to high temperatures and/or large linewidths associated with the inner decoupled, misaligned molecular structure. Line ratios of the higher-density tracers suggest that the densest phase of molecular gas in NGC 7465 has a lower density than is typical for nearby galaxies, possibly as a result of the recent gas accretion. All of the observed molecular properties of NGC 7465 are consistent with it having acquired its molecular (and atomic) gas from a spiral galaxy. Further detailed studies of the CO isotopologues in other early-type galaxies would be valuable for investigating the histories of those that may have acquired their gas from dwarfs. Finally, these ALMA data also show an unidentified line source that is probably a background galaxy similar to those found at z=1-3 in blind CO surveys.



قيم البحث

اقرأ أيضاً

We present the results of $^{12}$CO($J$=1-0) mosaicing observations of the cD galaxy NGC 1316 at kpc-resolution performed with the Morita Array of the Atacama Large Millimeter/submillimeter Array (ALMA). We reveal the detailed distribution of the mol ecular gas in the central region for the first time: a shell structure in the northwest, a barely resolved blob in the southeast of the center and some clumps between them. The total molecular gas mass obtained with a standard Milky-Way CO-to-H$_2$ conversion factor is $(5.62 pm 0.53)times10^8$ M$_odot$, which is consistent with previous studies. The disturbed velocity field of the molecular gas suggests that the molecular gas is injected very recently ($<1$ Gyr) if it has an external origin and is in the process of settling into a rotating disk. Assuming that a low-mass gas-rich galaxy has accreted, the gas-to-dust ratio and H$_2$-to-HI ratio are unusually low ($sim 28$) and high ($sim 5.6$), respectively. To explain these ratios, additional processes should be taken into accounts such as an effective dust formation and conversion from atomic to molecular gas during the interaction. We also discuss the interaction between the nuclear jet and the molecular gas.
128 - T. Kokusho , H. Kaneda , M. Bureau 2018
The properties of the dust in the cold and hot gas phases of early-type galaxies (ETGs) are key to understand ETG evolution. We thus conducted a systematic study of the dust in a large sample of local ETGs, focusing on relations between the dust and the molecular, atomic, and X-ray gas of the galaxies, as well as their environment. We estimated the dust temperatures and masses of the 260 ETGs from the ATLAS3D survey, using fits to their spectral energy distributions primarily constructed from AKARI measurements. We also used literature measurements of the cold (CO and HI) and X-ray gas phases. Our ETGs show no correlation between their dust and stellar masses, suggesting inefficient dust production by stars and/or dust destruction in X-ray gas. The global dust-to-gas mass ratios of ETGs are generally lower than those of late-type galaxies, likely due to dust-poor HI envelopes in ETGs. They are also higher in Virgo Cluster ETGs than in group and field ETGs, but the same ratios measured in the central parts of the galaxies only are independent of galaxy environment. Slow-rotating ETGs have systematically lower dust masses than fast-rotating ETGs. The dust masses and X-ray luminosities are correlated in fast-rotating ETGs, whose star formation rates are also correlated with the X-ray luminosities. The correlation between dust and X-rays in fast-rotating ETGs appears to be caused by residual star formation, while slow-rotating ETGs are likely well evolved, and thus exhausting their dust. These results appear consistent with the postulated evolution of ETGs, whereby fast-rotating ETGs form by mergers of late-type galaxies and associated bulge growth, while slow-rotating ETGs form by (dry) mergers of fast-rotating ETGs. Central cold dense gas appears to be resilient against ram pressure stripping, suggesting that Virgo Cluster ETGs may not suffer strong related star formation suppression.
100 - I. Bev{s}lic 2021
It is still poorly constrained how the densest phase of the interstellar medium varies across galactic environment. A large observing time is required to recover significant emission from dense molecular gas at high spatial resolution, and to cover a large dynamic range of extragalactic disc environments. We present new NOrthern Extended Millimeter Array (NOEMA) observations of a range of high critical density molecular tracers (HCN, HNC, HCO+) and CO isotopologues (13CO, C18O) towards the nearby (11.3 Mpc), strongly barred galaxy NGC 3627. These observations represent the current highest angular resolution (1.85; 100 pc) map of dense gas tracers across a disc of a nearby spiral galaxy, which we use here to assess the properties of the dense molecular gas, and their variation as a function of galactocentric radius, molecular gas, and star formation. We find that the HCN(1-0)/CO(2-1) integrated intensity ratio does not correlate with the amount of recent star formation. Instead, the HCN(1-0)/CO(2-1) ratio depends on the galactic environment, with differences between the galaxy centre, bar, and bar end regions. The dense gas in the central 600 pc appears to produce stars less efficiently despite containing a higher fraction of dense molecular gas than the bar ends where the star formation is enhanced. In assessing the dynamics of the dense gas, we find the HCN(1-0) and HCO+(1-0) emission lines showing multiple components towards regions in the bar ends that correspond to previously identified features in CO emission. These features are co-spatial with peaks of Halpha emission, which highlights that the complex dynamics of this bar end region could be linked to local enhancements in the star formation.
We present the first observations of H$^{13}$CN$(1-0)$, H$^{13}$CO$^+(1-0)$ and SiO$(2-1)$ in NGC,6240, obtained with the IRAM PdBI. Combining a Markov Chain Monte Carlo (MCMC) code with Large Velocity Gradient (LVG) modelling, and with additional da ta from the literature, we simultaneously fit three gas phases and six molecular species to constrain the physical condition of the molecular gas, including mass$-$luminosity conversion factors. We find $sim10^{10}M_odot$ of dense molecular gas in cold, dense clouds ($T_{rm k}sim10$,K, $n_{{rm H}_2}sim10^6$,cm$^{-3}$) with a volume filling factor $<0.002$, embedded in a shock heated molecular medium ($T_{rm k}sim2000$,K, $n_{{rm H}_2}sim10^{3.6}$,cm$^{-3}$), both surrounded by an extended diffuse phase ($T_{rm k}sim200$,K, $n_{{rm H}_2}sim10^{2.5}$,cm$^{-3}$). We derive a global $alpha_{rm CO}=1.5^{7.1}_{1.1}$ with gas masses $log_{10}left(M / [M_odot]right)=10.1_{10.0}^{10.8}$, dominated by the dense gas. We also find $alpha_{rm HCN} = 32^{89}_{13}$, which traces the cold, dense gas. The [$^{12}$C]/[$^{13}$C] ratio is only slightly elevated ($98^{230}_{65}$), contrary to the very high [CO]/[$^{13}$CO] ratio (300-500) reported in the literature. However, we find very high [HCN]/[H$^{13}$CN] and [HCO$^+$]/[H$^{13}$CO$^+$] abundance ratios $(300^{500}_{200})$ which we attribute to isotope fractionation in the cold, dense clouds.
103 - Ningyu Tang , Di Li , Carl Heiles 2016
Neither HI nor CO emission can reveal a significant quantity of so-called dark gas in the interstellar medium (ISM). It is considered that CO-dark molecular gas (DMG), the molecular gas with no or weak CO emission, dominates dark gas. We identified 3 6 DMG clouds with C$^+$ emission (data from Galactic Observations of Terahertz C+ (GOT C+) project) and HINSA features. Based on uncertainty analysis, optical depth of HI $taurm_{HI}$ of 1 is a reasonable value for most clouds. With the assumption of $taurm_{HI}=1$, these clouds were characterized by excitation temperatures in a range of 20 K to 92 K with a median value of 55 K and volume densities in the range of $6.2times10^1$ cm$^{-3}$ to $1.2times 10^3$ cm$^{-3}$ with a median value of $2.3times 10^2$ cm$^{-3}$. The fraction of DMG column density in the cloud ($frm_{DMG}$) decreases with increasing excitation temperature following an empirical relation $frm_{DMG}=-2.1times 10^{-3}T_(ex,tau_{HI}=1)$+1.0. The relation between $frm_{DMG}$ and total hydrogen column density $N_H$ is given by $frm_{DMG}$=$1.0-3.7times 10^{20}/N_H$. The values of $frm_{DMG}$ in the clouds of low extinction group ($Arm_V le 2.7$ mag) are consistent with the results of the time-dependent, chemical evolutionary model at the age of ~ 10 Myr. Our empirical relation cannot be explained by the chemical evolutionary model for clouds in the high extinction group ($Arm_V > 2.7$ mag). Compared to clouds in the low extinction group ($Arm_V le 2.7$ mag), clouds in the high extinction group ($Arm_V > 2.7$ mag) have comparable volume densities but excitation temperatures that are 1.5 times lower. Moreover, CO abundances in clouds of the high extinction group ($Arm_V > 2.7$ mag) are $6.6times 10^2$ times smaller than the canonical value in the Milky Way. #[Full version of abstract is shown in the text.]#
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا