ﻻ يوجد ملخص باللغة العربية
The optical responses of semiconducting transition metal dichalcogenides are dominated by excitons. Being able to strongly interact with light and other materials excitations, excitons in semiconductors are prototypes for investigating many-particle and strong-field physics, including exciton-exciton, exciton-photon, and exciton-phonon interactions. Strong exciton-photon interactions, in particular, can lead to the emergence of exciton-polariton hybrid quasiparticles with peculiar characteristics, and a tendency toward macroscopic and spontaneous coherence. Normally, far-field and near-field optical spectroscopy techniques are used to investigate exciton-photon interactions. Here, we demonstrate that the radiation generated by moving electrons in transition metal dichalcogenides, namely Cherenkov radiation, can strongly interact with excitons. We investigate the coherence properties and spectral signatures of exciton-photon interactions in TMDC bulk crystals, using cathodoluminescence spectroscopy. Our findings lay the ground for cathodoluminescence spectroscopy and in particular electron-beam techniques as probes of exciton-polariton spontaneous coherence in semiconductors, beyond the well-known plasmonic investigations.
We experimentally demonstrate hot exciton transport in h-BN encapsulated WSe2 monolayers via spatially and temporally resolved photoluminescence measurements at room temperature. We show that the nonlinear evolution of the mean squared displacement o
We theoretically analyse the hybrid Mie-exciton optical modes arising from the strong coupling of excitons in organic dyes or transition-metal dichalcogenides with the Mie resonances of high-index dielectric nanoparticles. Detailed analytic calculati
The strong light-matter coupling of a microcavity mode to tightly bound Frenkel excitons in organic materials emerged as a versatile, room-temperature compatible platform to study nonlinear many-particle physics and bosonic condensation. However, var
Spatially indirect excitons with displaced wavefunctions of electrons and holes play a pivotal role in a large portfolio of fascinating physical phenomena and emerging optoelectronic applications, such as valleytronics, exciton spin Hall effect, exci
Moire superlattices provide a powerful tool to engineer novel quantum phenomena in two-dimensional (2D) heterostructures, where the interactions between the atomically thin layers qualitatively change the electronic band structure of the superlattice