ﻻ يوجد ملخص باللغة العربية
There has been a rapid development in data-driven task-oriented dialogue systems with the benefit of large-scale datasets. However, the progress of dialogue systems in low-resource languages lags far behind due to the lack of high-quality data. To advance the cross-lingual technology in building dialog systems, DSTC9 introduces the task of cross-lingual dialog state tracking, where we test the DST module in a low-resource language given the rich-resource training dataset. This paper studies the transferability of a cross-lingual generative dialogue state tracking system using a multilingual pre-trained seq2seq model. We experiment under different settings, including joint-training or pre-training on cross-lingual and cross-ontology datasets. We also find out the low cross-lingual transferability of our approaches and provides investigation and discussion.
Despite interest in using cross-lingual knowledge to learn word embeddings for various tasks, a systematic comparison of the possible approaches is lacking in the literature. We perform an extensive evaluation of four popular approaches of inducing c
Neural network-based models augmented with unsupervised pre-trained knowledge have achieved impressive performance on text summarization. However, most existing evaluation methods are limited to an in-domain setting, where summarizers are trained and
Generative adversarial networks (GANs) are capable of producing high quality image samples. However, unlike variational autoencoders (VAEs), GANs lack encoders that provide the inverse mapping for the generators, i.e., encode images back to the laten
Zero-shot transfer learning for dialogue state tracking (DST) enables us to handle a variety of task-oriented dialogue domains without the expense of collecting in-domain data. In this work, we propose to transfer the textit{cross-task} knowledge fro
Cross-lingual Summarization (CLS) aims at producing a summary in the target language for an article in the source language. Traditional solutions employ a two-step approach, i.e. translate then summarize or summarize then translate. Recently, end-to-