ﻻ يوجد ملخص باللغة العربية
Non-native speakers show difficulties with spoken word processing. Many studies attribute these difficulties to imprecise phonological encoding of words in the lexical memory. We test an alternative hypothesis: that some of these difficulties can arise from the non-native speakers phonetic perception. We train a computational model of phonetic learning, which has no access to phonology, on either one or two languages. We first show that the model exhibits predictable behaviors on phone-level and word-level discrimination tasks. We then test the model on a spoken word processing task, showing that phonology may not be necessary to explain some of the word processing effects observed in non-native speakers. We run an additional analysis of the models lexical representation space, showing that the two training languages are not fully separated in that space, similarly to the languages of a bilingual human speaker.
Cross-lingual named-entity lexica are an important resource to multilingual NLP tasks such as machine translation and cross-lingual wikification. While knowledge bases contain a large number of entities in high-resource languages such as English and
Spoken dialogue systems such as Siri and Alexa provide great convenience to peoples everyday life. However, current spoken language understanding (SLU) pipelines largely depend on automatic speech recognition (ASR) modules, which require a large amou
Spoken Language Understanding (SLU), a core component of the task-oriented dialogue system, expects a shorter inference latency due to the impatience of humans. Non-autoregressive SLU models clearly increase the inference speed but suffer uncoordinat
This paper is an ELITR system submission for the non-native speech translation task at IWSLT 2020. We describe systems for offline ASR, real-time ASR, and our cascaded approach to offline SLT and real-time SLT. We select our primary candidates from a
Spoken Language Understanding (SLU) converts hypotheses from automatic speech recognizer (ASR) into structured semantic representations. ASR recognition errors can severely degenerate the performance of the subsequent SLU module. To address this issu