ﻻ يوجد ملخص باللغة العربية
In this letter, we use the exactly solvable Sachdev-Ye-Kitaev model to address the issue of entropy dynamics when an interacting quantum system is coupled to a non-Markovian environment. We find that at the initial stage, the entropy always increases linearly matching the Markovian result. When the system thermalizes with the environment at a sufficiently long time, if the environment temperature is low and the coupling between system and environment is weak, then the total thermal entropy is low and the entanglement between system and environment is also weak, which yields a small system entropy in the long-time steady state. This manifestation of non-Markovian effects of the environment forces the entropy to decrease in the later stage, which yields the Page curve for the entropy dynamics. We argue that this physical scenario revealed by the exact solution of the Sachdev-Ye-Kitaev model is universally applicable for general chaotic quantum many-body systems and can be verified experimentally in near future.
We develop a formalism for computing the non-linear response of interacting integrable systems. Our results are asymptotically exact in the hydrodynamic limit where perturbing fields vary sufficiently slowly in space and time. We show that spatially
We study the Hubbard model with non-Hermitian asymmetric hopping terms. The conjugate hopping terms are introduced for two spin components so that the negative sign is canceled out. This ensures that the quantum Monte Carlo simulation is free from th
We investigate a model system for the injection of fermionic particles from filled source sites into an empty chain. We study the ensuing dynamics for Hermitian as well as for non-Hermitian time evolution where the particles cannot return to the bath
Classical reversible cellular automata (CAs), which describe the discrete-time dynamics of classical degrees of freedom in a finite state-space, can exhibit exact, nonthermal quantum eigenstates despite being classically chaotic. We show that every c
In a recent paper (Phys. Rev. Lett. 123, 210602), Kozin and Kyriienko claim to realize genuine ground state time crystals by studying models with long-ranged and infinite-body interactions. Here we point out that their models are doubly problematic: