ﻻ يوجد ملخص باللغة العربية
To make informed decisions in natural environments that change over time, humans must update their beliefs as new observations are gathered. Studies exploring human inference as a dynamical process that unfolds in time have focused on situations in which the statistics of observations are history-independent. Yet temporal structure is everywhere in nature, and yields history-dependent observations. Do humans modify their inference processes depending on the latent temporal statistics of their observations? We investigate this question experimentally and theoretically using a change-point inference task. We show that humans adapt their inference process to fine aspects of the temporal structure in the statistics of stimuli. As such, humans behave qualitatively in a Bayesian fashion, but, quantitatively, deviate away from optimality. Perhaps more importantly, humans behave suboptimally in that their responses are not deterministic, but variable. We show that this variability itself is modulated by the temporal statistics of stimuli. To elucidate the cognitive algorithm that yields this behavior, we investigate a broad array of existing and new models that characterize different sources of suboptimal deviations away from Bayesian inference. While models with output noise that corrupts the response-selection process are natural candidates, human behavior is best described by sampling-based inference models, in which the main ingredient is a compressed approximation of the posterior, represented through a modest set of random samples and updated over time. This result comes to complement a growing literature on sample-based representation and learning in humans.
We present a method to estimate Gibbs distributions with textit{spatio-temporal} constraints on spike trains statistics. We apply this method to spike trains recorded from ganglion cells of the salamander retina, in response to natural movies. Our an
The anatomically layered structure of a human brain results in leveled functions. In all these levels of different functions, comparison, feedback and imitation are the universal and crucial mechanisms. Languages, symbols and tools play key roles in
Neural electromagnetic (EM) signals recorded non-invasively from individual human subjects vary in complexity and magnitude. Nonetheless, variation in neural activity has been difficult to quantify and interpret, due to complex, broad-band features i
Active inference offers a first principle account of sentient behaviour, from which special and important cases can be derived, e.g., reinforcement learning, active learning, Bayes optimal inference, Bayes optimal design, etc. Active inference resolv
Nature is in constant flux, so animals must account for changes in their environment when making decisions. How animals learn the timescale of such changes and adapt their decision strategies accordingly is not well understood. Recent psychophysical