ﻻ يوجد ملخص باللغة العربية
We present a Markov Chain Monte Carlo (MCMC)-based parameter estimation package, CosmoReionMC, to jointly constrain cosmological parameters of the $Lambda$CDM model and the astrophysical parameters related to hydrogen reionization. The package is based on a previously developed physically motivated semi-analytical model for reionization, a similar semi-analytical model for computing the global 21~cm signal during the cosmic dawn and using an appropriately modified version of the publicly available CAMB for computing the CMB anisotropies. These calculations are then coupled to an MCMC ensemble sampler texttt{emcee} to compute the posterior distributions of the model parameter. The model has twelve free parameters in total: five cosmological and seven related to the stellar populations. We constrain the parameters by matching the theoretical predictions with CMB data from Planck, observations related to the quasar absorption spectra and, for the first time, the global 21~cm signal from EDGES. We find that incorporating the quasar spectra data in the analysis tightens the bounds on the electron scattering optical depth $tau$ and consequently the normalization $A_s$ of the primordial matter power spectrum (or equivalently $sigma_8$). Furthermore, when we include the EDGES data in the analysis, we find that an early population of metal-free stars with efficient radio emission is necessary to match the absorption amplitude. The CosmoReionMC package should have interesting future applications, e.g., probing non-standard extensions to the $Lambda$CDM model.
(Abridged) We present the results of a systematic GBT and GMRT survey for 21-cm absorption in a sample of 10 DLAs at 2<z_abs<3.4. Analysis of L-band VLBA images of the background QSOs are also presented. We detect 21-cm absorption in only one DLA (at
The 21-cm and Lyman Alpha lines are the dominant line-emission spectral features at opposite ends of the spectrum of hydrogen. Each line can be used to create three dimensional intensity maps of large scale structure. The sky brightness at low redshi
The absorption feature in the global spectrum is likely the first 21cm observable from the cosmic dawn, which provides valuable insights into the earliest history of structure formation. We run a set of high-resolution hydrodynamic simulations of ear
Galaxy disks are shown to contain a significant population of atomic clouds of 100pc linear size which are self-opaque in the 21cm transition. These objects have HI column densities as high as 10^23 and contribute to a global opacity correction facto
In this work, we present a new method to estimate cosmological parameters accurately based on the artificial neural network (ANN), and a code called ECoPANN (Estimating Cosmological Parameters with ANN) is developed to achieve parameter inference. We