ﻻ يوجد ملخص باللغة العربية
The topology of electronic states in band insulators with mirror symmetry can be classified in two different ways. One is in terms of the mirror Chern number, an integer that counts the number of protected Dirac cones in the Brillouin zone of high-symmetry surfaces. The other is via a $mathbb{Z}_2$ index that distinguishes between systems that have a nonzero quantized orbital magnetoelectric coupling (axion-odd), and those that do not (axion-even); this classification can also be induced by other symmetries in the magnetic point group, including time reversal and inversion. A systematic characterization of the axion $mathbb{Z}_2$ topology has previously been obtained by representing the valence states in terms of hybrid Wannier functions localized along one chosen crystallographic direction, and inspecting the associated Wannier band structure. Here we focus on mirror symmetry, and extend that characterization to the mirror Chern number. We choose the direction orthogonal to the mirror plane as the Wannierization direction, and show that the mirror Chern number can be determined from the winding numbers of the touching points between Wannier bands on mirror-invariant planes, and from the Chern numbers of flat bands pinned to those planes. In this representation, the relation between the mirror Chern number and the axion $mathbb{Z}_2$ index is readily established. The formalism is illustrated by means of $textit{ab initio}$ calculations for SnTe in the monolayer and bulk forms, complemented by tight-binding calculations for a toy model.
The modern theory of polarization allows for the determination of the macroscopic end charge of a truncated one-dimensional insulator, modulo the charge quantum $e$, from a knowledge of bulk properties alone. A more subtle problem is the determinatio
The recent discovery of topological Kondo insulators has triggered renewed interest in the well-known Kondo insulator samarium hexaboride, which is hypothesized to belong to this family. In this Letter, we study the spin texture of the topologically
Quasi-periodic quantum spin chains were recently found to support many topological phases in the finite magnetization sectors. They can simulate strong topological phases from class A in arbitrary dimension that are characterized by first and higher
Inspired by the recent experimental observation of topological superconductivity in ferromagnetic chains, we consider a dilute 2D lattice of magnetic atoms deposited on top of a superconducting surface with a Rashba spin-orbit coupling. We show that
We present an alternative approach to studying topology in open quantum systems, relying directly on Greens functions and avoiding the need to construct an effective non-Hermitian Hamiltonian. We define an energy-dependent Chern number based on the e