ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of quenching in dwarf galaxies in local galaxy clusters

66   0   0.0 ( 0 )
 نشر من قبل Joachim Janz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transformation of late-type galaxies has been suggested as the origin of early-type dwarf galaxies in galaxy clusters. Venhola et al. analysed correlations between colour and surface brightness for galaxies in the Fornax cluster binned by luminosity or stellar mass. In the bins with $M_star<10^8 {rm M}_odot$, the authors identified a correlation of redness with fainter surface brightness and interpreted it as a consequence of the quenching of star formation by ram pressure stripping in the dwarf galaxies. We carry out a corresponding analysis for the Virgo cluster and find great similarities in these correlations between surface brightness and colour for the two clusters, despite expected differences in the strength of the ram pressure. Furthermore, we extend the analysis to a wider range of optical colours for both clusters and contrast the results with expectations for fading and reddening stellar populations. Overall the slopes of the surface brightness-colour relations are consistent with these models. In addition the sizes of the early- and late-type galaxies at these low masses are comparable. These two results are compatible with a transformation scenario. However, when analysing early- and late-type galaxies separately, the consistency of the slope of the surface brightness-colour relations with the model expectations for fading and reddening stellar population applies only to the late types. The lack of this imprint for the early-type dwarfs calls for some additional explanation, for which we discuss several possibilities. Finally, the Virgo cluster is an atypical cluster with a low fraction of quiescent early-type galaxies at all galaxy masses despite its large cluster mass. (abridged)



قيم البحث

اقرأ أيضاً

We explore the quenching of low-mass galaxies (10^4 < Mstar < 10^8 Msun) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived from analyzing color-magnitude diagrams of resol ved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) Lower mass galaxies quench earlier than higher mass galaxies; (2) Inside of virial radius there is no correlation between a satellites current proximity to a massive host and its quenching epoch; (3) There are hints of systematic differences in quenching times of M31 and Milky Way (MW) satellites, although the sample sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with literature results, we qualitatively consider the redshift evolution (z=0-1) of the quenched galaxy fraction over ~7 dex in stellar mass (10^4 < Mstar < 10^11.5 Msun). The quenched fraction of all galaxies generally increases toward the present, with both the lowest and highest mass systems exhibiting the largest quenched fractions at all redshifts. In contrast, galaxies between Mstar ~ 10^8-10^10 Msun have the lowest quenched fractions. We suggest that such intermediate-mass galaxies are the least efficient at quenching. Finally, we compare our quenching times with predictions for infall times of low-mass galaxies associated with the MW. We find that some of the lowest-mass satellites (e.g., CVn II, Leo IV) may have been quenched before infall while higher mass satellites (e.g., Leo I, Fornax) typically quench ~1-4 Gyr after infall.
We use the EAGLE hydrodynamical simulation to trace the quenching history of galaxies in its 10 most massive clusters. We use two criteria to identify moments when galaxies suffer significant changes in their star formation activity: {it i)} the inst antaneous star formation rate (SFR) strongest drop, $Gamma_{rm SFR}^{rm SD}$, and {it ii)} a quenching criterion based on a minimum threshold for the specific SFR of $lesssim$ 10$^{-11}rm yr^{-1}$. We find that a large fraction of galaxies ($gtrsim 60%$) suffer their $Gamma_{rm SFR}^{rm SD}$ outside the clusters R$_{200}$. This ``pre-processed population is dominated by galaxies that are either low mass and centrals or inhabit low mass hosts ($10^{10.5}$M$_{odot} lesssim$ M$_{rm host} lesssim 10^{11.0}$M$_{odot}$). The host mass distribution is bimodal, and galaxies that suffered their $Gamma_{rm SFR}^{rm SD}$ in massive hosts ($10^{13.5}rm M_{odot} lesssim M_{host} lesssim 10^{14.0}M_{odot}$) are mainly processed within the clusters. Pre-processing mainly limits the total stellar mass with which galaxies arrive in the clusters. Regarding quenching, galaxies preferentially reach this state in high-mass halos ($10^{13.5}rm M_{odot} lesssim M_{host} lesssim 10^{14.5}M_{odot}$). The small fraction of galaxies that reach the cluster already quenched has also been pre-processed, linking both criteria as different stages in the quenching process of those galaxies. For the $z=0$ satellite populations, we find a sharp rise in the fraction of quenched satellites at the time of first infall, highlighting the role played by the dense cluster environment. Interestingly, the fraction of pre-quenched galaxies rises with final cluster mass. This is a direct consequence of the hierarchical cosmological model used in these simulations.
The relative average minimum projected separations of star clusters in the Legacy ExtraGalactic UV Survey (LEGUS) and in tidal dwarfs around the interacting galaxy NGC 5291 are determined as a function of cluster mass to look for cluster-cluster mass segregation. Class 2 and 3 LEGUS clusters, which have a more irregular internal structure than the compact and symmetric class 1 clusters, are found to be mass segregated in low mass galaxies, which means that the more massive clusters are systematically bunched together compared to the lower mass clusters. This mass segregation is not present in high-mass galaxies nor for class 1 clusters. We consider possible causes for this segregation including differences in cluster formation and scattering in the shallow gravitational potentials of low mass galaxies.
We present detailed chemical abundances of Fe, Ca and Ba for 17 globular clusters (GCs) in 5 Local Group dwarf galaxies: NGC 205, NGC 6822, WLM, the SMC and LMC. These abundances are part of a larger sample of over 20 individual elements measured in GCs in these galaxies using a new analysis method for high resolution, integrated light spectra. Our analysis also provides age and stellar population constraints. The existence of GCs in dwarf galaxies with a range of ages implies that there were episodes of rapid star formation throughout the history of these galaxies; the abundance ratios of these clusters suggest that the duration of these burst varied considerably from galaxy to galaxy. We find evolution of Fe, Ca, and Ba with age in the LMC, SMC, and NGC 6822 that is consistent with extended, lower-efficiency SF between bursts, with an increasing contribution of low-metallicity AGB ejecta at late times. Our sample of GCs in NGC 205 and WLM are predominantly old and metal-poor with high [Ca/Fe] ratios, implying that the early history of these galaxies was marked by consistently high SF rates.
In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample con taining some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC5813 and NGC5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for IACTs [ABRIDGED]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا